Title: Surviving the Storm: Exploring the Role of Natural Transformation in Nutrition and DNA Repair of Stressed *Deinococcus radiodurans*

Supplementary Data file:

Figure S1: Survival of wild-type and natural transformation (NT) mutants of *D. radiodurans* following exposure to gamma radiation, MMC, and UV radiation, or combinations thereof. Exponentially growing cultures of the wild-type strain and NT mutants ($\Delta endA$, $\Delta dprA$, and $\Delta endA \Delta dprA$) were exposed to a 6 kGy dose of gamma radiation, or MMC (10 µg/ml) for 30 minutes, or 1500 J/m² of UV radiation, or a combination of both gamma radiation, and or a combination of MMC and UV radiation. After exposure, the cells were diluted, and aliquots were spotted onto TGY medium. Plates were then incubated at 32°C for 48 hours. The data presented here is representative of three independent experiments.

Figure S2: Cell viability and growth curve of wild type and NT mutants after exposure to gamma radiation. Optical density at 600 nm was continuously monitored using a microtiter-based density reader. The growth medium (TGY) was used as a blank throughout the incubation period, and data was normalized to this blank optical density. Panel (A) shows the growth of normal, untreated cells; panel (B) depicts cells exposed to 6 kGy of gamma radiation; panel (C) illustrates cells treated with MMC; and panel (D) presents cells treated with both MMC and 6 kGy of gamma radiation. The data presented here are the mean \pm SEM from three independent experiments.

Figure S3: The DNA double-strand breaks (DSBs) repair kinetics in *D. radiodurans* wild-type and its NT-specific gene mutants.

PFGE was utilized to evaluate the repair kinetics of DSBs. The repair processes in $\Delta endA$ and $\Delta endA\Delta dprA$ mutants were specifically monitored. NotI-digested DNA samples were prepared from both unirradiated cells (U) and cells exposed to 6 kGy of radiation, with samples collected at various post-irradiation recovery times (PIR). The DNA was analyzed immediately after irradiation (0 hours) and at designated recovery intervals (in hours). Lambda PFG molecular mass standards were included in lane M for size calibration. The results indicate that the $\Delta endA \Delta dprA$ double mutant demonstrates a relatively faster and more efficient DSB repair capability compared to the $\Delta endA$ mutant. The data presented here is representative of two independent experiments.

Figure S4: Multiple sequence alignment (MSA) for EndA homologs. MSA of EndA homologs was performed using clustal omega (https://www.ebi.ac.uk/jdispatcher/msa/clustalo). The EndA sequence of D. radiodurans (uniprot ID Q9RTZ7), E. coli (P25736), V. cholerae (P08038), and A. hydrophila (Q44064) were retrieved from uniprot database. The identical residues have been highlighted with red background while similar residues have been boxed and marked with red font.

Figure S5: *D. radiodurans* wild type and NT mutants growth measurement in minimal medium. Optical density at 600 nm monitored continuously in a microtiterbased density reader. The minmal medium was used as a blank throughout the incubation period, and data was normalized to this blank optical density. Panel (A) shows the growth of cells in minimal medium; panel (B) cells in minimal medium supplemented with 0.5mg/ml calf thymus DNA (cfDNA). The data presented here are the mean ± SEM from three independent experiments.

Figure S6: Growth curve of wild-type *D. radiodurans* cells in the presence of cfDNA or DNase-treated cfDNA in the TGY medium with and without gamma radiation exposure. Wild-type *D. radiodurans* cells were cultured in TGY, TGY + cfDNA, and TGY+cfDNA (DNAase-digested) with and without gamma irradiation (6kGy). Equal numbers of cells (0.1 OD₆₀₀) inoculated in 24 wells microtiter plate in triplicate and the optical density at 600 nm (OD₆₀₀) was continuously monitored using a microtiter-based density reader. TGY medium served as the blank throughout the incubation period, and the data were normalized to this blank optical density. The data shown represent the mean \pm SEM from three independent experiments.

Table S1: Bacterial strains, plasmids, and primers Used in this study

Bacterial strains	Organism	Genotype	Source
D. radiodurans		Wild type strain	
R1	D. radiodurans	ATCC13939	Lab stock
		endA1 hsdR17(r	
		_{К12} [–] <i>т</i> _{К12} +)	
		supE44 thi-1	
	E. coli	recA1 gyrA96	
		relA1	
		lacF"[proA+B+	
		lacl ^q	
		Z∆M15 <i>::</i> T <i>n</i> 10]	
<i>E. coli</i> Novablue		(Tet ^R)	Lab stock

A. Bacterial Strains

	D. radiodurans	D. radiodurans R1	Prof. Pascale
		comEA comEC Ω	Servant lab,
$\Delta com EA \Delta com EC$		kan	France
	D. radiodurans	D. radiodurans R1	
∆comEA		comEA Ω Kan	This work
	D. radiodurans	D. radiodurans R1	
		dprA (dr_0120) Ω	
∆dprA		spec	[24]
	D. radiodurans	D. radiodurans R1	
∆endA		endA (dr_1600)	
		Ω kan	This work
	D. radiodurans	D. radiodurans R1	
∆endA ∆dprA		endA Ω kan ,	
		dprA Ω spec	This work
	D. radiodurans	D. radiodurans R1	
ΔpilT		pilT (dr_1963) Ω	
		spec	This work

Plasmids:

Names	Characteristics and Source	lab stock
pVHS559	A shuttle vector between <i>D. radiodurans</i> and <i>E. coli</i> (Spec ^R)	lab stock
pRADgro	pRAD1 carrying 261bp <i>Bgl</i> I- <i>Xba</i> l fragment of promoter (Pgro) from <i>D. radiodurans</i>	lab stock
pNOK <i>comEA</i>	pNOK suicidal vector carrying upstream and downstream DNA fragment of <i>comEA</i> gene (<i>dr_1855</i>)	This work
pNOK <i>endA</i>	pNOK suicidal vector carrying upstream and downstream DNA fragment of <i>endA</i> gene (<i>dr_1600</i>)	This work
pNOS <i>dprA</i>	pNOS suicidal vector carrying upstream and downstream DNA fragment of <i>dprA</i> gene (<i>dr</i> 0120)	This work
pNOS <i>pilT</i>	pNOS suicidal vector carrying upstream and downstream DNA fragment of <i>pilT</i> gene (<i>dr_1963</i>)	This work
pRAD <i>dprA</i>	<i>dprA</i> gene cloned in pRADgro plasmid at	This work

	Apal and Xbal restriction sites	
pRAD <i>endA</i>	<i>endA</i> gene cloned in pRADgro plasmid at Apal and Xbal restriction sites	This work

Primers used:

SI. No.	Name of primer and	Sequence (5' to 3')	Purpose
1	comEA-UF	AAA GGG CCC GGC AAT CAC GTT CAT CAG	<i>∆comEA</i> mutant
2	comEA-UR	ATA GGA TCC GCG TGA CGC TCG CAG TGG	generation
3	comEA-DF	ATA GGA TCC GAA GCC CTT CCC AAA GTC	
4	comEA-DR	TAG TCT AGA AGA AGC CCT CAT CAA ACG	_
7	endA-UF	ATA GGT ACC TGC CCG ACT TCC TGC ATT	<i>∆endA</i> mutant
8	endA-UR	AAA GGG CCC AGG AAA AGA GGT GGT GCA	generation
9	endA-DF	ATA GGA TCC TTG CCC CTT AAT GCA GCA	
10	endA-DR	TAG TCT AGA TAA CGG CGG GGT GAA ACG	
11	dprA-UF	ATA GGT ACC TAA GCG CCT ATC AAG CCC TC	<i>∆dprA</i> mutant
12	dprA-UR	AAA GGG ATG CCG CCG CAG GTT TTC GAT	generation
13	dprA-DF	ATA GGA TCC GAA CTG AAC AAG GCG GCA GA	
14	dprA-DR	TAG TCT AGA ACG CGG CAA CAG AGA GAA GTC	
15	<i>pilT-</i> UF	AAA GGG CCC CAT CGA GAA CTT CAA CAT	<i>ΔpilT</i> mutant
16	<i>pilT-</i> UR	ATA GGA TCC ATG AAC TCG ATG GGG TCT T	generation
17	<i>pilT-</i> DF	ATA GGA TCC AGC TCG CCA ACA ACC TCG T	
18	<i>pilT-</i> DR	ATG TCT AGA AAC GAT TCC ACC GCA ATC GG	
19	<i>dprA-</i> pRAD-F	ATGGGCCCGTGACCCTTCCCTCC	

20		GCTCTAGATCAGCGACTCCAACG	Cloning of
	dprA-		<i>dprA</i> in
	pRAD-R		pRADgro
21	endA-	ATGGGCCCATGACGGCGAGCACCCCG	Cloning of
	pRAD-F		<i>endA</i> in
22	endA-	GCTCTAGACTAACGCCCCAGCCCTTC	pRADgro
	pRAD-R		