

बेहतर भविष्य हेतु पदार्थ

पदार्थ

विज्ञान ने दीर्घ-काल से परमाणु ऊर्जा विभाग के अनुसंधान एवं रिएक्टर विकास कार्यक्रमों के लिए एक निर्णायक नींव के रूप में कार्य किया है। पदार्थ वर्ग समाचार पत्र के इस विशेष अंक में वैज्ञानिक प्रगति को रेखांकित करने वाले लेखों के विविध रचनाओं को समेकित किया गया है, जिसमें - प्रगत मिश्रधातु विकास एवं उच्च-तापमान वाले चीनी मिट्टी से लेकर आधुनिक इलेक्ट्रॉन सूक्ष्मदर्शी, अत्यधुनिक यांत्रिक गुण-धर्म अभिलक्षण का वर्णन, योजक निर्माण, उत्प्रेरक, नाभिकीय पदार्थ प्रक्रमण और सामरिक खनिज निष्कर्षण तक शामिल हैं। प्रत्येक लेख इस बात पर प्रकाश डालता है कि कैसे मौलिक समझ, निरंतर प्रयोग और स्वदेशी प्रौद्योगिकी विकास नाभिकीय क्षेत्र की वैज्ञानिक एवं अभियांत्रिक चुनौतियों का सामना करने के लिए एकजुट रहे हैं और नाभिकीय क्षेत्र से परे समाज एवं उद्योग के लिए स्पिन-ऑफ लाभ प्रदान करने में अग्रणी भूमिका अदा कर सकते हैं।

इस अंक के लेखों में, पदार्थ वर्ग के कई प्रभागों द्वारा अर्जित महत्वपूर्ण प्रगति को दर्शाया गया है। इसके अलावा, पाठकों को पदार्थ वर्ग, भापअ केंद्र के पदार्थ विज्ञान से संबंधित चतुर्दिक गतिविधियों का रसास्वाद करवाने हेतु भापअ केंद्र, पऊवि की विभिन्न इकाइयों और शैक्षणिक संस्थानों के अनुसंधान समूहों के साथ सफल सहयोग के चुनिंदा विषयों को भी शामिल किया गया है। इनमें, रिएक्टर दाबा पाल हेतु बैनोटिक स्टील्स में हुई प्रगति, द्रविभूत-लवण प्रौद्योगिकियों के लिए Ni-Cr-Mo मिश्रधातु; विभिन्न आयाम एवं अवधि के पैमाने पर पदार्थ परीक्षण में विकास; चुंबकीय पदार्थ; बोराइड-आधारित अवशोषक; ऑक्सीकरण-प्रतिरोधी लेपन; उच्च प्रदर्शन वाले शीशे, चीनी मिट्टी और यौगिकों; हाइड्रोजन उत्पादन के लिए छिद्रयुक्त चीनी मिट्टी के पात्र; उभरते रिएक्टर अवधारणाओं के लिए संरचनात्मक पदार्थ; और iDPC-STEM और PIGE सहित नवीन विश्लेषणात्मक क्षमताओं पर आधारित लेख शामिल हैं। इनमें लेसर योजक निर्माण, नैनोपार्टिकल संश्लेषण के माध्यम से ई-अपशिष्ट पुनश्वक्रण, बृहत पैमाने पर नैनोट्यूब उत्पादन और उद्योग को हस्तांतरित प्रौद्योगिकियों का एक व्यापक पोर्टफोलियो जैसी उपलब्धियों के विषय भी शामिल हैं जोकि देश की आत्मनिर्भरता को सुट्ट करते हैं। समग्र रूप से, ये विकास अगली पीढ़ी की रिएक्टर प्रणालियों को सक्षम बनाने, सुरक्षा मार्जिन का विस्तार करने और देश के स्वदेशी प्रौद्योगिकी आधार को मज़बूत करने में पदार्थ वर्ग की केंद्रीय भूमिका को रेखांकित करते हैं।

यह अंक, डॉ. राधवेंद्र तिवारी, विशिष्ट वैज्ञानिक एवं निदेशक, पदार्थ वर्ग को समर्पित है, जिन्होंने नाभिकीय पदार्थ अनुसंधान में अतुलनीय वैज्ञानिक कार्यों के माध्यम से स्थायी योगदान किया है। यहाँ प्रस्तुत लेखों में से फेज़ कायांतरण, इलेक्ट्रॉन सूक्ष्मदर्शी, जर्कोनियम धातु विज्ञान एवं संरचनात्मक पदार्थ आदि उनके योगदान के माध्यम से ही साकार हो सके हैं। उनका नेतृत्व सहयोगात्मक समस्या-समाधान, कठोर लक्षण वर्णन पद्धतियों और वैज्ञानिक अनुशासन की संस्कृति को पोषित करने में भी समान रूप से महत्वपूर्ण रहा है। इस अंक में शामिल शोध का विस्तार उस वैज्ञानिक पारिस्थितिकी तंत्र को दर्शाता है जिसे बनाने में उन्होंने मदद की और भाभा परमाणु अनुसंधान केंद्र, नाभिकीय ईंधन समिश्र, राजा रमन्ना प्रगत प्रौद्योगिकी केंद्र, इंदिरा गांधी परमाणु अनुसंधान केंद्र तथा शैक्षणिक संस्थानों में उनकी साझेदारी को बढ़ावा दिया।

हम, आशा करते हैं कि यह विशेष अंक हाल में प्राप्त उपलब्धियों के अभिलेख तथा पदार्थ अनुसंधान, विकास एवं प्रौद्योगिकी रूपांतरण में निरंतर नवाचार के लिए एक प्रेरक का कार्य करेगा। हम, सभी योगदानकर्ताओं द्वारा किए गए प्रयासों सहित पदार्थ वर्ग की वैज्ञानिक गतिविधियों के साथ उनके निरंतर जुड़ाव के लिए पाठकों के प्रति हार्दिक आभार प्रकट करते हैं।

डॉ. राम निवास सिंह
उत्कृष्ट वैज्ञानिक एवं प्रमुख, यांत्रिक धातुकर्म प्रभाग
पदार्थ वर्ग, भाभा परमाणु अनुसंधान केंद्र

Materials for a better tomorrow

Materials science has long served as a decisive foundation for the Department of Atomic Energy's research and reactor development programmes. This special issue of the Materials Group Newsletter brings together a diverse set of articles reflecting this scientific breadth—from advanced alloy development and high-temperature ceramics to modern electron microscopy, state-of-the-art mechanical property characterization, additive manufacturing, catalysis, nuclear materials processing, and strategic mineral extraction. Each contribution highlights how fundamental understanding, sustained experimentation, and indigenous technology development converge to meet the scientific and engineering challenges of the nuclear sector and can lead to spin-off benefits to society and industry beyond the nuclear realm.

The articles in this issue illustrate the significant progress achieved across multiple divisions of the Materials Group. In addition, selected cases of successful collaborations with other research groups from BARC, other DAE units and research groups from academic institutions have also been included to give readers a flavour of the breadth and depth of the materials related activities of Materials Group, BARC. They document advances in bainitic steels for reactor pressure vessels; Ni–Cr–Mo alloys for molten-salt technologies; developments in materials testing at various length and time scales; magnetic materials; boride-based absorbers; oxidation-resistant coatings; high-performance glasses, ceramics and composites; porous ceramics for hydrogen production; structural materials for emerging reactor concepts; and innovative analytical capabilities including iDPC-STEM and PIGE. Also featured are achievements in laser additive manufacturing, e-waste recycling through nanoparticle synthesis, large-scale nanotube production, and a broad portfolio of technologies transferred to industry—each reinforcing national self-reliance. Together, these developments underscore the Materials Group's central role in enabling next-generation reactor systems, expanding safety margins, and strengthening the country's indigenous technology base.

This issue is published in honour of Dr. Raghvendra Tewari, Distinguished Scientist & Director, Materials Group, whose distinguished scientific career has made enduring contributions to nuclear materials research. His work in phase transformations, electron microscopy, zirconium metallurgy, and structural materials has shaped many of the themes represented here. Equally significant has been his leadership in nurturing collaborative problem-solving, rigorous characterization methodologies, and a culture of scientific discipline. The breadth of research showcased in this volume reflects the scientific ecosystem he helped build and the partnerships he fostered across BARC, NFC, RRCAT, IGCAR, and academic institutions.

We hope this special issue serves both as a record of recent accomplishments and as an inspiration for continued innovation in materials research, development and technology translation. We thank all contributors for their efforts and the readership for their continued engagement with the scientific activities of the Materials Group.

Dr. Ram Niwas Singh
Outstanding Scientist &
Head, Mechanical Metallurgy Division
Materials Group, BARC