
�यिूबट अंशाकंन और गेट �चालन हेतु �वाटंम

सॉ�टवयेर �टैक िक��कट का �यो�तानुकूल

तरंग�प जिन� के साथ समाकलन
1 1 1 1 2*रािधका नासेरी , सदंीप भराडे , एम. वाई. दीि�त , गोपाल जोशी और आर. िवजयराघवन

साराशं

�वाटंम सॉ�टवयेर �टैक का एक आ�ब�री ववेफॉम� जेनरेटर (एड��यजूी) के साथ एकीकरण भौितक
�वैिबट पर �वाटंम ए�गोिरदमऔर �वाटंम �योग�को िन�पािदत करने के िलए मह�वपूण � है। यह आलेख
ओपन सोस� िक��कट �वाटंम सॉ�टवयेर �टैक को एड��यजूी के साथ सफलतापूव�क एकीकृत करने को
दश�ता है, िजसम� िक��कट के िवकास के मा�यम से यह हािसल िकया गया है।

क�पाइलेशन पाइपलाइन

�वांटम कं�ोल
15

Integration of Quantum Software Stack Qiskit
to Custom Arbitrary Waveform Generator for
Qubit Calibration and Gate Operations

1 1 1 1 2 *Radhika Nasery , Sandeep Bharade , M. Y. Dixit , Gopal Joshi and R. Vijayaraghavan
1Accelerator Control Division, Bhabha Atomic Research Centre (BARC), Trombay-400085, INDIA

ABSTRACT

Quantum Software Stack integration with a Arbitrary Waveform Generator (AWG) is
important for executing quantum algorithms and quantum experiments on physical qubits.
This article demonstrates successful integration of Qiskit Quantum Software Stack with
AWG through development of Qiskit Backend.

KEYWORDS: Quantum software stack, Arbitrary waveform generator, Qiskit

Compilation Pipeline

Quantum Control
15

2Quantum Measurement and Control (QuMaC) Laboratory,Department of Condensed Matter Physics and

Materials Science, Tata Institute of Fundamental Research (TIFR), Mumbai

*Author for Correspondence: Radhika Nasery
E-mail: radhikan@barc.gov.in

1�वरक िनयं�ण �भाग, भाभा परमाणु अनुसधंान क� � (भापअ क� �), �ाबें-400085, भारत
2�वाटंम मापन और िनयं�ण (�यएूमएसी) पसघंिनत पदाथ � भौितकी और साम�ी िव�ान िवभाग,

टाटा मूलभतू अनुसधंान स�ंथान (टीआईएफआर), मंुबई

90 BARC newsletter July-August 2024

Quantum Technologies

Introduction

 Quantum computing is rapidly progressing, demanding
sophisticated control mechanisms for precise manipulation of
quantum bits - qubits. Qubits are the fundamental units of
quantum information in quantum computing, and precise
control over their states is crucial for implementing quantum
gates and executing quantum algorithms. Arbitrary Waveform
Generators (AWG) are used to produce user defined, precise
and tailored RF waveforms to manipulate the state of qubits.
Quantum algorithms are implemented using sequences of
quantum gates. AWG support the creation of customizable
pulse sequences, enabling the implementation of qubit
calibration, quantum experiments and implementation of
quantum circuits. To make quantum computers accessible to
users and enable the development of quantum applications, a
quantum software stack is required. This article presents
integration of Qiskit quantum stack with AWG.

Quantum Software Stack

 A quantum stack is the hierarchy of components, from
the high-level algorithms down to the physical qubits that
abstracts away the complexity of the underlying quantum
hardware [1]. It typically consists of layers (Fig.1) like a
quantum algorithm layer, an intermediate representation layer

and a quantum control and readout electronics interface layer.
The quantum algorithm layer is where quantum algorithms are
implemented using high-level quantum programming
languages and software development kits (SDKs). This layer is
also used to define qubit calibration experiments. The
quantum compilers convert the algorithms written in high level
language to a format known as Intermediate Representation
(IR). IR layer provides a hardware-agnostic representation of
quantum circuits that are compiled and optimized for different
target qubit architectures. OpenQASM [2] is an example of a
popular IR for quantum circuits. The compiler optimization
performs circuit rewriting, transformation, and optimization
techniques to map logical qubits in the quantum circuit to the
physical qubits of the hardware (as shown in Fig.2), while
minimizing circuit depth and gate count. It also synthesizes
gates into the native gate set supported by the target hardware.
The quantum analog-digital interface layer is responsible for
converting the digital gate-level instructions to analog
waveforms that control the qubits. This layer handles tasks like
frequency control, qubit initialization, gate application, and
measurement. A micro-architecture is typically implemented to
translate IR for arbitrary waveform generation. This is where
arbitrary waveform generators play a key role in precisely
shaping the control pulses. The physical qubit control layer

Fig.1: Quantum Software Stack

Fig.2: Qiskit Compilation Pipeline.

July-August 2024 BARC newsletter 91

Quantum Technologies

similarities in terms of the overall architecture, they differ in
aspects like the supported quantum hardware, programming
languages and feature set. Qiskit has emerged as one of the
most popular quantum sof tware stacks due to its
comprehensive feature set, extensibility, and strong community
support. It is an open-source SDK that supports multiple
programming languages (Python, Java, Swift, JavaScript),
simulators, and quantum hardware backends (IBM, IonQ,
Honeywell). Qiskit also provides higher-level abstractions and
applications for domains like optimization, machine learning,
finance, and chemistry. Therefore, open source Qiskit quantum
software stack was selected for integration with AWG. Fig.2
shows the Qiskit compilation pipeline. A quantum circuit is
defined in python high level language and submitted for
compilation. The compiler transpiles the circuit into basis gates
of the quantum hardware and a IR representation in form of
OpenQASM2 object is generated.

Development of Qiskit Backend

 The Qiskit backend [8] is the interface between the
quantum circuits defined in the quantum algorithm layer and
the underlying quantum hardware or simulator. It provides a

interacts directly with the qubits to apply the required
operations.

 Some of the leading quantum software stacks are
Qiskit[3] (IBM), Cirq[4] (Google), Q# [5] (Microsoft), Forest
(Rigetti) [6], and Ocean (D-Wave)[7]. While they share many

Fig.4: AWG Architecture

Fig.5: BARCPoviderInterface and Backend Properties for custom AWG.

92 BARC newsletter July-August 2024

Fig.3: Qiskit Backend Integration.

Quantum Technologies

(b) PV voltage & current waveform at 14Hz.

(c) Motor winding voltage & current waveform at 31Hz.

unified API for running quantum circuits on different targets
and returning the measurement results. To integrate a AWG
into the Qiskit backend, a new (as shown in Fig. 3) backend
provider, backend, job and result classes are implemented that
conform to the Qiskit backend interface specifications.
Quantum circuits are transpiled i.e. optimized by a compiler
and then give the output in format of Quantum Object- Qobj.
Backends take in a Qobj as input, which is a QASM - IR
representation and a Job object is returned. Job instances can
be thought of as the “ID” for a submitted job. They find out the
execution's state at a given point in time (for example, if the job
is queued, running, or has failed) and also allow control over
the execution of the job on the AWG. The raw data sample
stream from measurement operation of the qubit from the
AWG is routed to Result class and then back to the higher level
Quantum Circuit/ Pulse Schedule program.

Integration with AWG

 The AWG has 3 main parts (Fig.4): micro-processor,
readout processing block and signal generating block. The

micro-processor with has added timed Assembly Language
(ASM) instructions to generate RF pulses. RF pulses are
generated for control and readout of qubits. The key aspect of
the integration is mapping the quantum gates in the circuit to
the corresponding analog waveforms generated by the AWG.
This requires a gate-to-pulse mapping given by Fig.5 that
translates each quantum gate to a sequence of control pulses
with specific amplitudes, frequencies, and durations. The
backend provider will use this mapping to convert the quantum
circuit into a series of AWG instructions that generate the
required pulses. The AWG integration also needs to handle
aspects like synchronization, measurement, and feedback
between the quantum and classical systems. Fig.5 also shows
t h e py t h o n p ro g r a m i nvo k i n g t h e i m p l e m e n te d
“BARCProviderInterface”.

Results

 Fig.6 shows the Qiskit python program describing the
schedule of pulses to be run for a single frequency, constant
amplitude loopback testing and corresponding schedule

Fig.6: Python Program to provide schedule for single frequency Loopback Testing

Fig.7: Python Program to run a pulse schedule and ASM output for AWG.

July-August 2024 BARC newsletter 93

Quantum Technologies

generated. Qubit channel is the channel for qubit state
manipulation. Measure Channel is the channel for readout
resonator pulse generation and Acquire Channel is the
waveform acquisition channel for Qubit state measurement.

 Fig.7 shows this Schedule running as a job on the
Backend. The Backend compiles this Schedule as a Qiskit
Backend Object and generates ASM language program to be
run on the AWG using language to language parser. Generated
ASM program is executed on micro-processor. The DAC and
ADC are loop-backed.

 Fig.8 shows the generated frequency of 7.3GHz as seen
on Spectrum Analyzer. The tproc reads the ADC measurement
channel and this data is displayed as Qiskit Result.

Conclusion

 Qiskit Backend is successfully developed for AWG. The
Backend integrates the Qiskit stack with the analog RF pulse
generation. Python program generating a Qiskit pulse schedule
of a single frequency loopback testing is successfully
demonstrated on the backend. Future work involves
integration of Qiskit experiment library with Backend. The AWG
Backend for Qiskit software stack can be installed at intranet
facility so that users across organization can avail this facility
for quantum experiment.

Acknowledgments

 We sincerely appreciate QuMaC Lab, TIFR, for their
critical role in advancing this research. Their exceptional
support and expertise have significantly contributed to the
outcomes of this study.

References

[1] Frederic T. Chong, Diana Franklin & Margaret Martonosi,

“Programming languages and compiler design for realistic quantum

h a r d w a r e ” , N a t u r e 5 4 9 , 1 8 0 – 1 8 7 (2 0 1 7) .

https://doi.org/10.1038/nature23459

[2] Andrew W. Cross, Lev S. Bishop, John A. Smolin, Jay M.

G a m b e t t a , “ O p e n Q u a n t u m A s s e m b l y L a n g u a g e ” ,

arXiv:1707.03429v2[quant-ph], 13 Jul 2017

[3] Gadi Aleksandrowicz, et al. “Qiskit: An Open-source Framework

for Quantum Computing. 0.7.2” , Zenodo, 23 Jan. 2019,

doi:10.5281/zenodo.2562111.

[4] Cirq Developers, “Cirq”. Zenodo, Dec. 01, 2023. doi:

10.5281/zenodo.10247207.

[5] A. S. Tolba, M. Z. Rashad, and Mohammed A. El-Dosuky. 2013

“Q#, a quantum computation package for the .NET platform”. arXiv

preprint arXiv:1302.5133

[6] Peter J. Karalekas, et al. “Pyquil: Quantum Programming in

P y t h o n . v 2 . 1 7 . 0 ” , Z e n o d o , 3 0 J a n . 2 0 2 0 ,

doi:10.5281/zenodo.3631770.

[7] “D-Wave's Ocean Software,” http://ocean.dwavesys.com

(2020)

[8] IBM Quantum Documentation, API Reference, Providers Interface,

https://docs.quantum.ibm.com/api/qiskit/qiskit.providers.Backend.

94 BARC newsletter July-August 2024

Fig.8: RF Frequency Spectrum Output and Results of Loopback Testing in Qiskit Python Program.

Quantum Technologies

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

