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   साराशं

कण �वरक िविवध घटक� का अंतरसबंधं होता है । �वरक �णािलय� म� िनिहत जिटल डेटापैटन� उ�च 
गुणव�ावाल ेडेटासेट �दान करते ह� , जो उ�नत मशीन लिन�ग (ML) ए�गोिरदम के �िश�ण के िलए 
आदश� ह�। इस लेखम� �वरक  EPICS SCADA और डेटाआक�इ�वग के साथ  ML  �ेमवक�  के एकीकरण को 
��तुत िकया गया है । इसके अलावा , लोलेवलआरएफ (LLRF)  िनयं�क के िलए आनु�वशक ए�गोिरदम 
और पुनरावृि�िश�णिनयं�ण के अनु�योग के पिरणाम भी ��तुत िकए गए ह� । िविभ�न आधुिनक िनयं�ण 
और अनुमान तकनीक� का उ�नयन अ�याधुिनक �ौ�ोिगकी का उपयोग करके उ�च श��तवाल े�वरक की 
कई गुहा ऑपरेशन की िव�वसनीयता, द�ता और ��थरता को सुिन��चत करेगा । िड�ू�नग अनुमान और 
आरएफ �ोत रैिखकीकरण म� �यु�त आधुिनक िनयं�ण तकनीक� को भी पेश िकया गयाहै।केएफ, ईकेएफ एव ंयकेूएफ �ारा आरएफ गुिहका उ��हण 
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   ABSTRACT

Particle accelerators constitute an interconnection of diverse components. Intricate data 
patterns inherent in accelerator systems provide rich datasets ideal for training 
sophisticated Machine Learning (ML) algorithms. This article presents integration of 
accelerator EPICS SCADA and Data Archiving with ML framework. Results in application of 
genetic algorithm and iterative learning control for Low Level RF (LLRF) controller are also 
presented. Augmentation of various modern control and estimation techniques using state 
of the art technology shall lead to reliable, efficient and stable multi-cavity operation of high 
power accelerator. Modern control techniques employed in detuning estimation and RF 
source linearization are introduced.Plot of estimated real versus 

imaginary components of RF cavity 
pickup by KF, EKF and UKF
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Introduction

Accelerator Control Division has successfully designed, 
developed and commissioned control and instrumentation 
(C&I) systems, like, Low Level RF (LLRF) [1] for RF cavity control, 
RF Protection and Interlock (RFPI) [2] system, Beam Position 
Monitor (BPM) [3] system and Programmable Timing and 
Control System (PTC) [4] for various accelerators facilities. As 
accelerators grow in complexity and scale, the demand for 
efficient, safe and adaptive control systems becomes 
increasingly crucial. Traditional control systems struggle to 
adapt to the inherent non-linearity and non-predictable 
environmental dynamics. The developed C&I systems employ 
RF and digital signal processing algorithms and provide digital 
data for logging, monitoring and post-mortem analysis. Data 
intensive dynamics of C&I systems make them suitable to 
harness the advances in the domain of ML. In this context, the 
integration of ML techniques into the control and 
instrumentation of particle accelerators has emerged as a 
promising avenue for enhancing performance, optimizing 
operation and overcoming inherent challenges.

ML integration with Accelerator Controls

 Experimental Physics and Industrial Control System [5] 
(EPICS) is a set of open source software tools, libraries and 
applications developed collaboratively and used worldwide to 
create distributed soft real-time control systems for scientific 
instruments such as particle accelerators, telescopes and 
other large scientific experiments. Integration of ML analysis 
tools with accelerator control systems requires interfacing with 
EPICS Input Output Controller (IOC) and databases. The quality 
and temporal alignment of accelerator data, encompassing 
information from various noisy sensors and diverse 
subsystems, necessitate meticulous and often automated pre-
processing and integration efforts. The upgraded version of 
EPICS - EPICS 7 is more suitable for ML integration as it 
provides structured Process Variables (PV) database with time 
stamped metadata. EPICS 7 Soft IOC for LLRF system has been 
developed and integrated with a Data Archiver, which supports 
NOSQL database. For ML integration, EPICS 7 Data Acquisition 
(DAQ) IOC design as shown in Fig.1 is proposed. ML algorithms 
require extensive datasets, and often there is a limited 
availability of historical data, especially for rare failure events 
or off beat operating scenarios. This needs continuous logging 
of data streams from instrumentation. In EPICS DAQ IOC, PV 
data stream gets the data from Device Support which is 
interfaced to underlying LLRF/RFPI/BPM front end equipment. 
Timestamp information from timing system is crucial for time 
alignment and is used to populate metadata of PVs. For certain 

PVs pre-processing services such as data merging, temporal 
alignment and unification is required before storage. ML 
analysis tools can then interface with the stored data and/or 
directly with real time processing in IOC. 

Control Instrumentation

 Performance of LLRF and Resonance Control System 
(RCS) defines the phase, amplitude and frequency stability of 
RF cavity. Generally proportional integral (PI) controller is used 
in LLRF system for amplitude and phase stabilization. 
Optimizing the performance of controller is pivotal for 
addressing challenges such as RF amplifier noise, cavity 
parameter swings, microphonics and beam loading effects. 
Conventional methods are limited by process modelling error 
and parametric uncertainties. Adaptive control system can 
overcome these challenges. 

 Many of the PI parameters optimization problems are 
multi-objective in nature, for example, improving both transient 
and steady state response, and a thorough comprehension of 
equilibrium between competing choices is desired. The Non-
dominated Sorting Genetic Algorithm (NSGA-II) [6] emerges as 
a potent online optimization technique, providing an optimal 
set of solutions for competing system parameters, overshoot 
and settling time in step response. The cost function used in 
NSGA-II is a weighted combination of Integral Square Error 
(ISE) for transient response, Integral Time Absolute Error (ITAE) 
for steady state response and Integral Absolute Error (IAE) for 
overall error reduction. For evaluating the performance of 
NSGA-II algorithm, a RF system is modelled as a First Order 
Plus Dead Time (FOPDT) System and PI parameters are 
calculated using Zeigler Nichols (ZN), Cohen Coon (CC) and 
NSGA-II method. A comparative analysis of PI controller 
performance for a step input change is performed as shown in 
Fig.2. NSGA-II algorithm provides better transient and steady 
state response as compared to classical methods. Fig.3 shows 
that NSGA-II algorithm has significantly improved IAE, ITAE and 

Fig.1: EPICS 7 IOC for ML integration.                              

Fig.2: Response of FOPDT system for step change in input.          

Memory requirement High

Low High

Slow Fast

Computational complexity

Convergence 

Low

PID-ILC      FNOILC

Table 1: Comparison of ILCs.          

No. of tuning parameters Less More
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characteristics of SC cavity, a non-linear estimator like 
Extended Kalman Filter (EKF) or Unscented Kalman Filter 
(UKF) [10] perform better. A linear estimator when used for a 
nonlinear system like SC cavity results in more variance as 
seen in simulated results in Fig.4. Fig.4 also shows that for SC 
cavity, UKF estimates are better compared to estimates by 
obtained using KF and EKF. Here, state estimation problem is 
solved by KF, EKF and UKF for real and imaginary components 
of the cavity pick-up denoted by Vcr and Vci, respectively for 
given cavity input signals and its model parameters 
subsequently resulting into detuning estimation [9]. 

 At high power operation of RF cavity, amplitude and 
phase non-linearity of RF power sources like Klystron or Solid 
State Power Amplifier (SSPA) pose control and operational 
difficulties. Estimators such as ordinary and recursive least 
squares capture RF source non-linearity and digitally pre-
distort [11] LLRF output to compensate for amplitude and 
phase non-linearity.  A predistortion needs placement of 
inverse transfer characteristics of SSPA at its input as shown in 
Fig.5, basically achieved through recursive least square 
estimation of Volterra model coefficients. A linearly increasing 
DPD input (x ) provides its output (y ) such that SSPA output DPD DPD

(y ) is also linearly increasing.PA

Fault detection

 Traditional protection systems like RFPI and Machine 
Protection System (MPS) are responsible for protection of 
equipment, personnel and facility. These systems continuously 
monitor signals from various sensors, compare these with 
predefined fault thresholds, and generate permit or stop 
operation of accelerator. The post-mortem data at the fault 
occurrence is stored and studied for root cause analysis. 
Unsupervised ML algorithms can be used to enhance the 
capability of traditional protection systems by a prior 
identification of detrimental conditions. This results in avoiding 
false fault conditions and thus, plant availability can be 
increased. Historic sensor data from diverse systems can be 
used for anomaly detection and the trained models can be 
deployed online. Results from the ML algorithms can be used 
to fine tune the threshold ranges of traditional systems.

ML for instrumentation

 The deployment of ML algorithms in control and 
instrumentation devices for particle accelerators is 
challenging. Real-time control requirements demand low-
latency processing, placing stringent demands on the timing 
precision of ML algorithms. ML algorithms are computationally 
intensive requiring high performance computing (HPC) 
platforms. HPC can be made available at edge-through May-June 2024  BARC newsletter    21

ISE as compared to ZN and CC. Further investigations are being 
carried out by experimental testing using cavity emulator.

 In pulsed mode of operation of cavity, disturbances due 
to beam loading and Lorentz Force detuning, are repetitive in 
nature. Another modern control method based on Iterative 
Learning, finds a significant role in such applications and helps 
achieve high amplitude and phase stabilities, especially in 
instances where RF-ON times are a few micro-seconds or lower. 
The addition of Iterative Learning Control (ILC) enhances 
control loop performance over and above achievable by 
feedback controller. ILC learns about system dynamics by 
capturing input and output over previous pulses. In this 
technique the control output is modified as per pre-defined 
cost function. 

 This method has demonstrated huge success in many 
engineering applications. Though proportional-integral-
derivative (PID) type of ILC has been reported as a solution, a 
more recent Fast Norm Optimal Iterative Learning Controller 
(FNOILC) [12] is better for fast error minimization with 
constrained control effort and faster convergence. Table 1 
shows comparison of the two candidate ILCs for handling RF 
cavity repetitive disturbance problems.

System Identification

 A number of critical systems in an accelerator are non-
linear and have time dynamics evolving over multiple 
parameter spaces. System modelling with BPM data is another 
area where ML can handle the online modelling of systems by 
predicting the parameter space inferred from the measured 
data. ML can also be used to reduce dimensionality of complex 
systems for tuning and speedup. In an operational accelerator, 
ML find an application in identification of model of RF cavity 
along with its associated RF system. The accurately identified 
model is important to implement current state of art algorithms 
based on modern control and estimation theory, detuning 
estimation and RF power amplifier linearization being a two of 
the examples. An accurately identified model by ML enhances 
performance of these algorithms, thus leading to overall 
improvement in control system performance. 

 Effective resonance control of RF cavity, especially for 
superconducting (SC) cavity, needs precise estimation of 
detuning using cavity model. Conventionally, least squares 
estimation, linear and non-linear observer based approaches 
have been used, however estimation based on Kalman filter 
(KF) and its variants offer practical advantages of robustness 
in presence of sensor noise and model uncertainty.

 In case of normal conducting cavity, detuning estimation 
based on adaptive KF [9] suffices. Due to non-linear transfer 

(b)

Table 1: Coupling capacitances and decay time T  at different gaps.             1

Fig.3: Plot of IAE, ITAE and ISE for ZN, CC and NSGA-II.                                  
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physical integrated platforms or through cloud. AI at the edge is 
a solution for many use cases such as integration of ML 
solutions with embedded control systems like RFPI for 
protection, RCS and LLRF system for RF cavity control, which 
are implemented on SoC-FPGA, cPCI-FPGA and VME-FPGA 
based embedded systems. This needs compatibility and 
interoperability of ML solutions with FPGA. TinyML [7] is a type 
of ML that allows models to run on smaller, less powerful 
devices. TinyML is suitable for FPGA as it employs techniques to 
convert model weights from floating-point numbers to fixed-
point or integer representations, removes unnecessary 
connections which reduce model size and computational 
demand. Integration of open source TinyML framework [8] for 
FPGA with EPICS 7 DAQ is currently under development for 
embedded control systems.

Conclusions

  EPCIS 7 DAQ IOC architecture is proposed for ML 
integration with accelerator controls. Application of NSGA-II 
optimization algorithm, and ILC are being pursued. 
Opportunities and challenges for application of ML in field of 
machine protection, system modell ing, tuning and 
optimization are presented. An indigenously developed 
elaborate control system integrated with machine learning, 
whose output acts as input to model based modern control 
approaches, seems to be a promising approach for reliable, 
efficient, stable and safe high power particle accelerator 
delivering high quality beam.
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Fig.4: Plot of estimated real versus imaginary components of RF 
cavity pickup by KF, EKF and UKF.           

Fig.5: Pre-distortion system for SSPA.
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