
Breast Cancer Treatment

Development and evaluation of [¹⁷⁷Lu]Lu-labeled-Trastuzumab for Radioimmunotherapy of Cancer Patients Suffering with HER2 Positive Breast Cancer

Mohini Guleria*^{1,2}, Jeyachitra Amirdhanayagam², Rohit Sharma¹ and Tapas Das^{1,2}

¹Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Trombay-400085, INDIA ²Homi Bhabha National Institute, Anushakti Nagar, Mumbai-400094, INDIA

Introduction

Trastuzumab, a monoclonal antibody (IgG) has been approved by US-FDA for immunotherapy of the HER2 positive breast cancer in 1998. However, in many cases, conventional immunotherapy involving Trastuzumab suffers from various issues, such as cardiotoxicity and other related complications [1,2]. Receptor heterogeneity and receptor down-regulation during the course of immunotherapy are additional factors resulting in low response of the breast cancer patients during Trastuzumab therapy [1,2]. To circumvent these issues, instead of using 'cold' (non-radioactive) antibody, the use of Trastuzumab in radiolabeled form has been envisaged, wherein the antibody is radiolabeled with a suitable radionuclide for exerting therapeutic effects. The aforementioned technique is termed as 'radioimmunotherapy' (RIT), where unlike immunotherapy, the associated radionuclide is responsible for therapeutic efficacy whereas the monoclonal antibody acts as the targeting vector only [3-5]. The application of [177Lu]Lu-DOTA-Trastuzumab is currently being explored clinically for diagnosis and radionuclidic therapy of patients suffering from HER2 positive breast cancer [3-5]. Lutetium-177 $[E_{\mbox{\tiny Bmax}}\mbox{=}0.497~\mbox{MeV}]$ is a therapeutic radionuclide suitable for development of radiolabeled antibodies especially due to its long half-life ($T_{_{1/2}}$ = 6.73 d) which matches well with that of the biological half-life of monoclonal antibodies. Given recent interest in the application of radiolabeled antibodies in cancer care, convenient and simple formulation of radiolabeled antibodies at hospital

*Author for Correspondence: Mohini Guleria E-mail: mohini@barc.gov.in radiopharmacies is highly desirable. Therefore, an attempt has been made to formulate a robust 'freeze-dried' Trastuzumabkit which will enable the preparation of patient doses of ¹⁷⁷Lulabeled Trastuzumab at hospital radiopharmacy in a simple and convenient manner. In the present work, systematic optimization of the kit constituents was carried out to arrive at the formulation which consistently give high and reproducible radiolabeling yields for [¹⁷⁷Lu]Lu-DOTA-Trastuzumab using medium specific activity ¹⁷⁷Lu [555-740 MBq/µg].

Materials and Methods

Conjugation of Trastuzumab with p-NCS-benzyl-DOTA (subsequently referred as DOTA) was performed by following the reported method [5]. The average number of DOTA-units attached per Trastuzumab molecule was analysed by two different methods viz. UV-Vis spectrophotometry as well as MALDI-TOF mass spectrometry. The purified DOTA-Trastuzumab conjugate was also analysed for protein content by employing Bradford protein assay. The formulation of freeze-dried kit of DOTA-Trastuzumab was carried out by following a procedure mentioned as: A stock solution 4.0 mL containing 32 mg of DOTA-Trastuzumab in 0.2 M NaOAc buffer (pH 5.0) was used. The other stock solutions (aqueous) utilized were of sucrose (50.0 mg/mL), ascorbic acid (50.0 mg/ 0.5 mL) and 0.2 N NaOH (10 mL). Aliquots of 375 µL (3.0 mg) of DOTA-Trastuzumab conjugate, 100 µL of sucrose (5.0 mg), 50 µL of ascorbic acid (5.0 mg), 0.2 N NaOH (1.0 mL) and 0.2 N NaOAc buffer (1.0 mL) were withdrawn and added to each sterile glass vial. The vials were lyophilized and stored at 4°C till further use or till shelf-life of kit (6 months).

R&D in Health, Food, Agriculture & Water

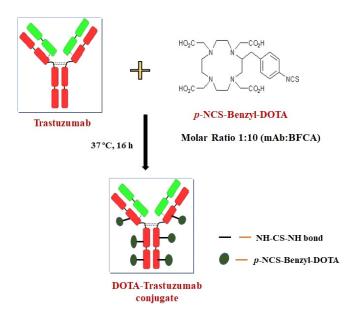


Fig.1: Pictorial depiction of conjugation reaction between Trastuzumab and p-NCS-benzyl-DOTA.

For radiolabeling, the freeze-dried DOTA-Trastuzumab formulation was reconstituted with 0.5 mL of deionized water followed by addition of 100-200 μ L (1.94-2.40 GBq) of [¹⁷⁷Lu]LuCl₃ (in 0.01 M HCl). The reaction mixture was incubated at 37°C for 30 minutes. Radiochemical purity of [¹⁷⁷Lu]Lu-DOTA-Trastuzumab was confirmed using paper chromatography (PC) and High Performance Liquid Chromatography (HPLC). PC was performed with 0.01 M sodium citrate buffer (pH 5.0) as mobile phase, while HPLC utilized a size-exclusion column (TSK Gel G3000SWXL) with isocratic elution using 0.05 M phosphate buffer (pH 7.0) containing 0.05% NaN₃ as the mobile phase.

Post-radiolabeling, [177 Lu]Lu-DOTA-Trastuzumab was evaluated in three different cancer cell lines (SK-OV-3, SK-BR-3 and MDA-MB-231) for determination of binding and specificity towards HER2 receptors. Cells were treated with [177 Lu]Lu-DOTA-Trastuzumab [5 MBq, 50 nM] for 2 h followed by washing with ice-cold 0.05 M PBS (pH 7.0) and solubilization with of 1N NaOH. The extracted cells were centrifuged, supernatant was removed and the activity associated with the cells was counted. Inhibition studies were carried out under same conditions by incubating the cancer cells with [177 Lu]Lu-DOTA-Trastuzumab and cold/non-radioactive Trastuzumab (3.3 µM).

Several physico-chemical studies were performed before [177 Lu]Lu-DOTA-Trastuzumab, formulated using DOTA-Trastuzumab kit, was released for further experimentation/ use. Bio-evaluation of [177 Lu]Lu-DOTA-Trastuzumab was performed in healthy Swiss mice (n=3) at different postadministration (p.i.) time points namely 1, 2, 5 and 7 d as well as in SK-OV-3 xenografted SCID mice at 48 h p.i. Postadministration, the animals were sacrificed, dissected and activity associated with various organs was determined as percentage injected activity per gram of organ (%IA/g of organ).

[¹⁷⁷Lu]Lu-DOTA-Trastuzumab prepared using in-house optimized freeze-dried kit of DOTA-Trastuzumab was utilized for limited clinical evaluation in patients suffering with HER2 positive breast cancer.

Results and Discussion

DOTA-Trastuzumab conjugate was synthesized by conjugating $-NH_2$ group of lysine amino acid in Trastuzumab with isothiocyanate group of DOTA derivative employing 1:10 molar ratio (Fig.1). Mass analyses revealed the average

number of BFCA molecules attached per Trastuzumab as 6.0 ± 1.1 , whereas using the UV-Vis spectrophotometric assay the same was determined to be 6.2 ± 0.8 (Fig.1).

Optimized freeze-dried Trastuzumab kit comprised 3.0 mg DOTA-Trastuzumab, 5.0 mg sucrose, 5.0 mg ascorbic acid, 8 mg NaOH and 16.5 mg NaOAc. Considering that minimum radiochemical purity of [¹⁷⁷Lu]Lu-DOTA-Trastuzumab should be ~95% for clinical application, it was observed that maximum 2.22 GBq of ¹⁷⁷Lu could be added in the kit vial, when ¹⁷⁷Lu having specific activity of 555 MBq/µg was used for the formulation of the radiolabeled agent.

PC and HPLC were used for the determining of RCP of [¹⁷⁷Lu]Lu-DOTA-Trastuzumab formulated using kit. In PC, $[^{177}Lu]Lu$ -DOTA-Trastuzumab remained at the origin (R_f = 0.0-0.1) whereas free ¹⁷⁷Lu moved to the solvent front $R_f = 1.0$). In HPLC, [177Lu]Lu-DOTA-Trastuzumab exhibited a retention time $(R_{\scriptscriptstyle t})$ of 14.5±0.5 min whereas uncomplexed $^{\scriptscriptstyle 177}Lu$ eluted from the column at 21.2±0.9 min. The percentage binding [¹⁷⁷Lu]Lu-DOTA-Trastuzumab in SK-OV-3 and SK-BR-3 cells ranged from 14.6 ± 2.1 to 23.0 ± 1.4 and 19.5 ± 0.9 to 32.0 ± 7.2 , respectively; whereas the same in MDA-MB-231 cells was observed to vary from 3.2±1.4 to 4.6±1.0. In addition to a lower binding in negative control, a significant decrease in the % binding of [¹⁷⁷Lu]Lu-DOTA-Trastuzumab in HER2 positive cancer cells in presence of excess of unmodified Trastuzumab was also observed. As a part of additional quality control studies, visual examination of [177Lu]Lu-DOTA-Trastuzumab showed the formulation as a clear, colorless and transparent solution. The pH of the final preparation was observed to be between 5.0 and 6.0.

Bio-evaluation studies revealed considerable uptake and prolonged retention of the radiolabeled agent in blood $(21.47\pm4.81, 17.06\pm0.79, 15.55\pm2.84$ and $12.32\pm3.94\%$ IA/g at 1, 2, 5 and 7 d p.i., respectively). Low accumulation and retention of the radiotracer was observed in majority of the organs except in liver and intestine. Biodistribution studies performed in SCID mice having SK-OV-3 xenografted tumor showed tumor uptake of $9.07\pm2.60\%$ IA/g at 48 h p.i. which indicated the ex-vivo tumor targeting potential of [¹⁷⁷Lu]Lu-DOTA-Trastuzumab formulated by using kit.

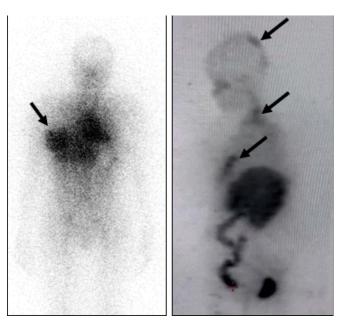


Fig.2: SPECT scans of two patients depicting the accumulation of [¹⁷⁷Lu]Lu-DOTA-Trastuzumab (shown with arrows) in cancerous lesions (Image courtesy: Dr. Venkatesh Rangarajan, TMH Parel and Dr. Nandini Pandit, JIPMER, Puducherry).

During clinical evaluation, [¹⁷⁷Lu]Lu-DOTA-Trastuzumab exhibited accumulation in cancerous lesions thereby showcasing the retention of its targeting efficacy post-functional modification and radiolabeling procedures (Fig.2).

Conclusion

The formulation of DOTA-Trastuzumab as a lyophilized kit, suitable for the formulation of patient dose of [177 Lu]Lu-DOTA-Trastuzumab, has been standardized. The kit was used for the formulation of patient dose of [177 Lu]Lu-DOTA-Trastuzumab with high RCP in a reproducible manner. Availability of DOTA-Trastuzumab freeze-dried kits will help in easy, convenient and consistent formulation of [177 Lu]Lu-DOTA-Trastuzumab patient doses in the hospital radiopharmacies.

Acknowledgments

The authors wish to express sincere gratitude to Dr. P. K. Mohapatra, Associate Director, RC&IG, BARC for his support. The authors are thankful to their colleagues of Radiochemical Section of Radiopharmaceuticals Division, BARC for providing [¹⁷⁷Lu]LuCl₃ for the present work. Authors are also grateful to Dr. Venkatesh Rangarajan (TMH, Parel) and Dr. Nandini Pandit (JIPMER, Puducherry) for their help towards clinical evaluation of [¹⁷⁷Lu]Lu-DOTA-Trastuzumab.

References

[1] X.F. Le, F. Pruefer and R.C. Bast. HER2-targeting antibodies modulate the cyclin-dependent kinase inhibitor p27Kip1 via multiple signaling pathway. Cell Cycle 4 (2005) 87-95.

[2] N.M. Ayoub, K.M. Al-Shami and R.J. Yaghan. Immunotherapy for HER2-positive breast cancer: recent advances and combination therapeutic approaches. Breast Cancer 11 (2019) 53-69.

[3] P. Bhusari, R. Vatsa, G. Singh, M. Parmar, A. Bal, D. Dhawan, B. R. Mittal and J. Shukla. Development of Lu-177-trastuzumab for radioimmunotherapy of HER2 expressing breast cancer and its feasibility assessment in breast cancer patients. Int J Cancer 15 (2017) 938-947.

[4] G. L. Ray, K.E. Baidoo, L. M. M. Keller, P. S. Albert, M. W. Brechbiel and D. Milenic. Pre-clinical assessment of ¹⁷⁷Lu-labeled trastuzumab targeting HER2 for treatment and management of cancer patients with disseminated intraperitoneal disease. Pharmaceuticals 5 (2012) 1-15.

[5] M. Guleria, R. Sharma, J. Amirdhanayagam, H. D. Sarma, V. Rangarajan, A. Dash and T. Das. Formulation and clinical translation of [¹⁷⁷Lu]Lu-trastuzumab for radioimmunotheranostics of metastatic breast cancer. RSC Med Chem 12 (2021) 263-277.