
Introduction

Apart from many other important uses, glasses are used for 
immobilization of radioactive waste and radiation shielding. In 
that context, tailor made glass is necessary. Glasses are known 
as supercooled liquid which are non-equilibrium, non-
crystalline material that spontaneously relax at room 
temperature [1] . The glass does not require to satisfy any rigid 
stoichiometric rules. Glasses can be made of any element 
present in the periodic table if quenched fast enough from the 
melt state to solid state. Zanotto et al. [2] showed that there is a 

52possibility of forming 10  different glass compositions with 80 
most useful chemical elements of the periodic table when 
combining them in 1.0 mol %. The experimental method of trial 
and error to make the glass with desired properties is 
expensive as well as time consuming. Computational tools like 
ab initio and classical molecular dynamics simulations can be 
used as an alternative to reduce the experimental expenses, 
but these computational tools have certain limitations like this 
can be precisely applied only for simple glass compositions 
containing maximum 5-6 elements. At least one simulation is 
required for each composition of the glass which increases the 
computational cost because there are a large number of 
compositions available.

 The Machine Learning (ML) model can be used to 
address the complex problem in the material science by using 
the existing information about the glasses [3]. The ML models 
are built on the concept of learning from the available 
database. In order to use the ML algorithms to predict the 
properties of the new glasses, it is essential that the developed 
model should have high predicting accuracy. The model 
accuracy mostly relies on the existence of the useful data 
which are accurate, consistent and complete. There are many 
ML algorithm which can be utilized to build the model. Previous 

study by Cassar et al. [4] reported a successful application of a 
Multilayer Perceptron (MLP) artificial neural network (ANN) to 
predict the glass transition temperature (T ) of multicomponent g

oxide glasses containing over 46 chemical elements. Further, 
Alcobaca et al. [5] showed application of different ML models 
to predict the T  of glasses containing over 65 chemical g

elements, where the random forest (RF) and k-nearest 
neighbors algorithm (K-NN) model had the highest accuracy as 
compared to other models. In these studies, the relative 
deviation (RD) at extreme T  (450K<; 1150K >) was shown to g

be higher as compared to the intermediate T  (459K<= T >= g g

1150K) range. The prediction of Young’s modulus values was 
done by Yang et al. [6] using high-throughput molecular 
dynamics simulations and ML models to infer the relationship 
between glass composition and Young’s modulus. 

 This letter reports the different ML models to predict the 
T  value, Young's modulus and density of the glasses, with the g

help of different features (% of compositions, atomic mass, 
atomic size and density) as input. Among the used ML models 
i.e. linear Regression [7] (LR) and random forest (RF) [8] , the 
RF model was found to have better accuracy.

Computational Methodology

 A schematic for ML application for predicting the glass 
properties is shown in Scheme 1.

Dataset

 For both the sodium borosilicate and radiation shielding 
window (RSW) glasses, the dataset used was collected from 
the SciGlass database, which contains 4,20,000 glasses and 
2,68,000 oxide glasses. We limited our dataset to different 
compositions of SiO , K O, Na O, PbO, LiO, BaO and As O . We 2 2 2 2 3

excluded all the compositions containing any other chemical 
element. In the selected dataset, the range of T  was varied g

3from 673K-1173K, the density was ranged from 1.8 g /cm  -
39g/cm  and Young’s modulus was ranged from 40GPa to 
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90GPa. The dataset after cleaning was reduced to greater 
extent T  – 1349, Young’s Modulus – 659, Density – 1445. The g

duplicate data was removed, and the median was selected for 
the clean dataset. The elemental compositions are presented 
in Fig. 1.

Machine Learning Algorithms and Evaluation 

 The ML algorithms used in present studies are linear 
regression and random forest. In most of the studies, the RF 
model has been used because it gives good predication that 
can be understood easily, and it is one of the few models which 
can perform both regression and classification tasks. The 
performance of the used ML models was checked by 
evaluating the coefficient R .2

Training and Evaluation Setup 

 The Feature Engineering [9] is an essential phase of 
developing machine learning models and is performed on the 

dataset as per the requirement. A feature is defined as a 
unique attribute or variable in a dataset. Feature engineering 
helps to improve the performance of machine learning model 
by selecting the right features for the model and preparing the 
features in a way that is suitable for the machine learning 
model. The step used in feature engineering were data 
cleansing, data transformation, feature extraction, feature 
selection.

 The dataset was randomly divided into 80:20 ratio. The 
80% of data was taken for the training the models and the 20 % 
for the testing the models. Then the models were built by using 
default Machine Learning Algorithms and then were modified 
to improve the accuracy of the models. The modification were 
made by changing the number of descriptors [10] as input data 
and adjusting the number of decision tree [11] in the models. 
Then the model was saved and used to predict the unknown 
data to check the accuracy of the model for unknown 

Scheme 1. Illustration of typical application of machine learning.

Fig.1: Number of compositions containing each elements in the clean dataset (a) Density, (b) T  and (c) Young’s Modulus. (Note: Oxygen is present g

in all glasses of this dataset).
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composition. Then we selected the best ML model for each 
properties that were calculated. All the studies were performed 
using the Python programming language with the sklearn, 
numb, pandas, matplot, and pickle libraries available in 
Anaconda-3.0.

Results & Discussion

Sodium Borosilicate Glasses

Density

 The density prediction was done using glass composition 
as input feature and no additional descriptors were 
considered. Both Linear regression and the Random Forest 

2 2model had given accurate results with R  Training and R  
Testing of 0.95 and 0.94 values for linear Regression and 0.98 
and 0.95 for Random Forest model (see Fig.2). The Random 

2Forest method gives better R  as compared to Linear 
Regression Model with percentage error of 0.7. Very close 
values of glass densities from MD simulation and from ML 
model in Table 1 for unseen glass compositions by ML model 
(either for training or testing), show the accuracy of RF model 
for prediction of glass density of sodium borosilicate glasses.

Glass transition temperature (T )g

2 The linear regression model was not suitable for T  as R  g

value was less than 0.8. Therefore, Random Forest model was 
used for the prediction of the T  value. The RF model was first g

tested with single input descriptor i.e. composition and then by 
using two descriptors - composition and density. The RF model 

2with single descriptor has R  training and testing equal to 0.98 
and 0.96 respectively as displayed in Fig.3. This model was 

Random Forest

2                                            R   Testing = 0.95
2R   Training = 0.98

(b)

2.4

2.2

1.9

2.5

2.3

2.1

2.0

2.42.21.9 2.52.32.12.02.42.22.0 2.52.32.11.9

Actual density Value

Training Data Scatter Plot Training Data Scatter Plot
P

re
d

ic
te

d
 d

e
n

si
ty

 V
a

lu
e

Actual density Value

2.4

2.2

2.0

2.5

2.3

2.1

1.9

P
re

d
ic

te
d

 d
e

n
si

ty
 V

a
lu

e

RMSE = 0.016

MAE = 0.0093

RMSE = 0.028

MAE = 0.0163

2                                            R   Testing = 0.94

RMSE = 0.02 RMSE = 0.028

MAE = 0.014 MAE = 0.0238

2.6

2.4

2.2

1.9

2.5

2.3

2.1

2.0

1.8
2.62.42.21.9 2.52.32.12.01.82.62.42.22.0 2.52.32.11.9

Actual density Value

Training Data Scatter Plot Training Data Scatter Plot

P
re

d
ic

te
d

 d
e

n
si

ty
 V

a
lu

e

Actual density Value

2.6

2.4

2.2

2.0

2.5

2.3

2.1

1.9

P
re

d
ic

te
d

 d
e

n
si

ty
 V

a
lu

e

(a)

Fig.2: Scattering plot of actual Density vs. predicted density of training and the testing data. (a) Linear Regression algorithm. (b) Random Forest 
Algorithm.

Sr.
No.

Glass composition MD estimated 

density (g/cm3)

ML predicted 

density (g/cm3)

1 2.39 2.39

2 2.44 2.43

3 2.48 2.48

4

B2O3

10

12.5

15

50

Na2O

10

12.5

15

10

SiO2

80

75

70

40 2.17 2.20

Table 1: Comparison of density from MD simulation and ML model 
for sodium borosilicate glasses.

Comparison of density from MD simulation and ML model [using RF 
method with composition as descriptor] for sodium borosilicate 
glasses.

Linear Regression

2R   Training = 0.95
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able to predict the T  of unknown compositions with error of   g
220 ± 0.01 K. The second model, with two descriptors has R  

training and testing equal to 0.98 and 0.93 respectively. In 
2spite of lower testing R , the second model was able to predict 

the unknown data with lesser error of 15.8 ± 0.01K (data 
shown in Table 2). Hereby, it can be remarked that the accuracy 
of model would increase significantly with the addition of the 
density descriptor as input feature.

Radiation Shielding Window (RSW) Glass

Density

 The density model for radiation shielding window (RSW) 
2glass build with one descriptor i.e. composition, which gave R  

training and testing of 0.99 and 0.93 respectively as shown in 
Fig.4. The predicted accuracy was 96% for unknown glass 
compositions, data reported in Table 3. The RF was seen to 
optimize at 50 trees as shown in Fig.5. The estimated RMSE 
and MAE are within acceptable range for density.

Glass transition temperature (T )g

 To predict T , RF model was used with three different g

number of descriptors. The first one with single descriptor of 
2composition, showed R  training and testing equal to 0.89 and 

0.64 respectively as shown in the Fig.6(a). Further, we added 
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Fig.3: Plot of actual vs predicted T  of training and testing using Random Forest Model. (a) Model with only one descriptor (composition),             g

(b) Model with two descriptors (composition and density).

Sr.
No.

Glass composition MD estimated ML predicted 
0T  ( Cg )0T  ( Cg )

1 530 541

2 511 506

3 570 567

4

B2O3

30

25

20

15

Na2O

14

10

12

15

SiO2

56

65

68

70 590 586

Table 2: Comparison of T  from MD simulation and ML model for g

sodium borosilicate glass.

Comparison of Tg from MD simulation and ML model [using RF 
method with two descriptors: composition, and density] for sodium 
borosilicate glass.
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2atomic mass descriptor to composition and found that the R  
training and testing was decreased to 0.88 and 0.61 

2respectively (see Fig.6(b)). R  testing was furthermore reduced 
2 rdto 0.42 (with R  training as 0.92), while including 3  descriptor 

of atomic size as shown in the Fig.6(c). Nevertheless, the 
prediction of T  for unknown dataset made using RF model with g

three descriptors showed sufficient close to the MD estimated 
T . (see Table 4). Notably, the estimated RMSE and MAE values g

are higher in case of RSW glass compared to NBS-Glass due to 
higher data range [5]. It might be noteworthy to mention that 
the sole-observation of the mean error values (RMSE, MAE) 

2and R  values can’t give enough evidence for the statistical 
accuracy of model for prediction than its competitors with 

2higher values of mean error bar and R . Similar to studies of 
Alobaca et al. [5], we found that in spite of higher mean error 

2and low R  testing, our model predicts good match of T  with MD g
2estimated data as shown in Table 4. The R  training and testing 

rdas a function of number of trees (for 3  model) is shown in 
Fig.7, where model seem to be optimized with 5 trees for 
training and 150 trees for testing. 

Young’s Modulus 

 Similar to previous case of T , three RF models with g

different descriptors; (i) composition, (ii) composition and 
atomic mass, and (iii) composition, atomic mass and atomic 

size; were used for prediction of Young’s modulus. The 
2overlapping of predicted data with actual data and the R  

training and testing for last two models (with two and three 
descriptors) is shown in Fig.8. The RF Model with three 

2 descriptors was found to have highest accuracy with R  training 
and testing equal to 0.88 and 0.89 respectively. This model 
was optimized with 150 number of RF tress (data shown in 

rdFig.9. The accuracy of 3  model can be noted from nearly 
similar values of ML predicted and MD estimated Young’s 
modulus values in Table 5 for unknown data which was not 
used either for training or testing. 

Conclusion

  In this work, we carried out large number of experiments 
evaluating two popular ML algorithms: Linear Regression and 
Random Forest to analyze data sets of sodium borosilicate 
glasses and window shielding glasses and their respective 
density, glass transition temperature T  and Young's Modulus. g

We investigated the performance of these algorithm when 
used for the prediction with default and featured engineered 
models. We also investigated the effect of descriptors on the 

2different property prediction and the R  value of the models. 
The impact of descriptor on the different properties of glass 
was noted to be different. The density had direct relation with 
composition and addition of any other descriptor doesn’t have 
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Fig.4: Scattering plot of actual density value vs predicted density value of training and the testing using Random Forest Model. Note – RMSE (Root 
Mean Square Error) and MAE (Mean Absolute Error).

Sr.
No.

Glass composition MD estimated 

density (g/cm3)

ML predicted 

density (g/cm3)

1 3.32 3.32

2 3.07 3.10

3 5.91 5.88

4

Si 2 2O K  O

84 16

67 0

51 0

64.8 1.8

Na2O

0

33

0

0

PbO

0

0

49

33.4 4.60 4.50

Table 3: Comparison of density from MD simulation and ML model 
for RSW glass.

Comparison of density from MD simulation and ML model [using RF 
method with composition as descriptor] for RSW glass.

2Fig.5: The accuracy (as captured by the R  value) of the Random 
Forest model as a function of number of trees considered in each 
model as obtained for the training and testing set respectively.
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any significant effect on the model accuracy. On the other 
hand, Young’s modulus not only depends on the composition 
but also greatly depends on other descriptors like atomic mass 
and atomic size. While T  mostly depends on the compositions g

and density. Importantly, with the prediction accuracy of these 

models for unknown data, it was shown that the sole-
2observation of the mean error values (RMSE, MAE) and R  

values can’t give enough evidence for the statistical accuracy 
of model than its competitors with higher values of mean error 

2bar and R .

Fig.6: Scattering plot of actual T  value vs predicted T  value of training and the testing using Random Forest Model. (a) Model with one descriptor g g

(composition), (b) Model with two descriptors (composition and Atomic Mass), (c) Model with three descriptors (composition, Atomic Mass and 
Atomic size).
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Sr.
No.

Glass composition

[MD] [ML] 

0T  ( Cg )0T  ( Cg )

1 431.2 420

2 422.4 413

3 452.0 467

4

K2O

66.7

75.8

90

77.3

Na2O

16.6

6.8

0

2.8

PbOSiO2 Li  O2 As  O32

16.7 0 0 0

7.6 9.8 0 0

5 0 5 0

4 14.4 1.4 0.04 444.4 445

Table 4: Comparison of T  from MD simulation and ML model for g

RSW glass.

Comparison of Tg from MD simulation and ML model[using RF 
method with three descriptors: composition, atomic mass and 
atomic size] for RSW glass.
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2Fig.7: The accuracy (as captured by the R  value) of the Random 
Forest model as a function of number of trees considered in each 
model as obtained for the training and testing set respectively.

Fig.8: Scattering of actual Young’s Modulus vs predicted Young's Modulus of training and the testing using Random Forest Model. (a) Model with 
two descriptors (composition and atomic mass), (b) Model with three descriptors (composition, atomic mass and atomic size).

Training Data Scatter Plot Testing Data Scatter Plot

P
re

d
ic

te
d

 Y
o

u
n

g
s 

M
o

d
u

lu
s 

V
a

lu
e

Actual Youngs Modulus Value Actual Youngs Modulus Value

P
re

d
ic

te
d

 Y
o

u
n

g
s 

M
o

d
u

lu
s 

V
a

lu
e

80 80

90 90

60 60

70 70

50 50

40 40

2                                            R   Testing = 0.89
2R   Training = 0.88

40 4050 5060 6070 7080 8090 90

RMSE = 3.0

MAE = 2.0

RMSE = 2.8

MAE = 1.9

(b)

Training Data Scatter Plot Testing Data Scatter Plot

P
re

d
ic

te
d

 Y
o

u
n

g
s 

M
o

d
u

lu
s 

V
a

lu
e

Actual Youngs Modulus Value Actual Youngs Modulus Value

P
re

d
ic

te
d

 Y
o

u
n

g
s 

M
o

d
u

lu
s 

V
a

lu
e

75
75

80
80

55

55

60

60

65
65

70 70

50

50

40

45

45
40 45 50 55 60 65 70 75 80 45 50 55 60 65 70 75

2                                            R   Testing = 0.69
2R   Training = 0.94

RMSE = 2.8

MAE = 1.9

RMSE = 7.0

MAE = 5.3

(a)

Research & Development

38 BARC newsletter       May-June 2023



  The presented study can be easily expanded to predict 
other properties such as thermal expansion coefficient, elastic 
modulus, and hardness to successfully replace empirical 
approves for developing novel glasses with useful properties 
and applications. The Machine Learning can also be used to 
construct an algorithm which would be able to predict more 
than one property at once.
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Sr.
No.

Glass composition

[MD] [ML] 

Y [GPa] Y [GPa]

1 50.50 50.28

2 71.00 71.15

3 64.92 64.36

4

K2O

66.7

77.3

75

52

Na2O

14.5

7.6

5

8

PbOSiO2 BaOLi  O2 As  O32

0 19 0 0 0.24

5.8 0 0 9.3 0

10 0 0 10 0

20 0 20 0 0 55.90 55.99

Table 5: Predicted Young’s modulus and actual Young’s modulus 
rdfrom 3  RF model.

Comparison of Young’s modulus from MD simulation and ML model 
[using RF method with three descriptors: composition, atomic mass 
and atomic size] for RSW glass.

2Fig.9: The accuracy (as captured by the R  value) of the Random 
Forest model as a function of number of trees considered in each 
model as obtained for the training and testing set respectively.
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