
algorithms like deep learning methods accelerated the field of 
data driven materials innovation. 

Challenges in ML for Materials Science

 Fig. 1 depicts the typical supervised ML model trained 
using labelled data to predict the material properties. Major 
components of such ML model are (a) Defining a problem      
(b) Data acquisition and selecting appropriate feature space, 
(c) Data processing or Exploratory Data Analysis (EDA) and     
(d) Training and validating the model using a suitable 
algorithm. Though many open-source materials databases are 
available, data is composed of different categories and data of 
each category is relatively limited when compared to other 
fields of data science. In most of the experimental data, studies 
were conducted at different experimental conditions and 
hence the data depends on various control parameters like 
temperature, time, humidity, raw chemicals used, etc. Once the 
data is selected, next key challenge is to select appropriate set 
of features (fingerprints) of the materials to map with the  
target property. Open-source libraries like Pymatgen[12], 
Matminer[13], Atomic Simulation Environment (ASE)[14], 
DScribe[15], etc. are highly useful for extracting different site, 
bond and global (lattice) features of molecule and materials. 
EDA includes verifying any outliers, imputing the missing data, 
encoding the object type parameters to numeric type, checking 
for any duplicate copies in the data, etc. Once the data is ready, 
selecting a particular algorithm for a given problem is another 
challenge and it should consider different factors like size of 
data, feature space, complexity of problem etc. If a too complex 
(high variance) model like deep learning algorithm is selected 
with limited data points, it can lead to over fitting. 
Interpretability of the trained model is another important factor 
to understand the features that attribute the most to overall 
prediction[16]. Accuracy of the model can be further tuned 
using the hyper-parameter tuning methods like random search 
cross validation and grid search cross validation. Other than 

Introduction

In recent years, revolution in artificial intelligence (AI) and big 
data have shown potential applications in accelerating the 
discovery of new molecules and materials[1]. Beyond the 
traditional methods of materials exploration using the trial and 
error experiments, theoretical and computational studies, data 
driven materials discovery is emerging as the fourth paradigm 
of material science which can improve the pace of materials 
innovation[2,3]. With the intention of accelerating the 
discovery of new materials, “Material Genome Initiative” (MGI) 
project was launched by the USA[4]. In machine learning (ML), 
a subclass of AI, machine extracts the knowledge from data (of 
materials) through mapping the structure-property relations 
which can be quite complex and beyond human intelligence in 
most of the cases and the knowledge gained can be applied for 
future predictions. One of the early attempts to use data for 
materials informatics was the development of CALculation of 
PHAse Diagrams (CALPHAD) to calculate the phase diagrams 
of alloys using the computed data of phase diagrams[5]. Data 
can be considered as the key component for material 
informatics and the amount of open-source data of materials 
has been rapidly increasing over the years. A large number of 
open materials databases like Inorganic Crystallographic 
Structural Database (ICSD)[6], Cambridge Crystallographic 
Data Centre (CCDC)[7], AFLOW[8], NOMAD[9], Materials 
Project[10], MARVEL NCCR[11], etc. composed of both 
experimental and computational data are openly available. 
Apart from the existing database, with different possible 
chemical compositions and structures, the chemical space of 
materials is virtually unlimited and many more new materials 
can be explored. In addition to the easily accessible open data 
resources,  explosive growth in the computational 
infrastructure along with the development of efficient 
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training ML models for predicting properties of materials, High-
Throughput Screening (HTS) techniques are shown to be 
potential tool to identify top materials for a particular 
application from large database of materials which is 
schematically shown in Fig.2. Recently, self-driving 
experimental laboratories were developed where robots can 
perform autonomous experiments very precisely to discover 
advanced functional materials.

Materials for Energy related Applications

 With ever increasing energy demands and adverse 
environmental effects of burning fossil fuels, great attention 
has been given to the clean and renewable energy 
technologies like solar, wind, hydrogen, nuclear energy, 
etc.[17] Progress in these new and advanced energy sectors is 
highly dependent on the design and development of advanced 
functional materials to withstand specific conditions like high 
temperature, corrosive conditions, high pressure, high energy 
radiation, etc. where data driven materials discovery has 
shown potential applications. Band gap of materials is an 
important property for designing materials for optical and 
electronic applications and the conventional Density 
Functional Theory (DFT) methods are inefficient in producing 
the accurate results whereas the hybrid functional methods 
which can provide reasonably good results are highly 
expensive. Zhuo et al.[18] developed a ML model to predict the 
band gap in inorganic solids where, support vector 
classification model was first used to classify metal and 
semiconductors followed by a support vector regressor to 
predict the band gaps. Kim et al.[19] trained a ML model using 
the Least Absolute Shrinkage and Selection Operator (LASSO) 
methods for predicting the dielectric breakdown strength in 
perovskite materials. Rajan et al.[20] trained a Gaussian 
process regressor model for predicting the band gaps in two-
dimensional (2D) transition metal carbides and nitrides, 
MXenes. Through the ML guided DFT studies, Sendek et al.[21] 
discovered many crystalline solid materials with high Li ion 
conductivity at room temperature which is highly important in 
designing efficient Li-ion batteries. Using the DFT results on 
104 graphene-supported single atoms catalysts, Lin et al.[22] 
trained random forest ML model to predict the overpotentials 

associates with the oxygen reduction reaction, oxygen and 
hydrogen evolution reactions over the selected catalysts. The 
trained model was used to predict the catalytic activity of other 
260 graphene supported single atoms catalysts. Using the first 
principles based HTS study, Wu et al.[23] screened nitride and 
oxynitride compounds to identify the novel water splitting 
photocatalyst. Through the DFT based HTS study, Greeley et 
al.[24] screened 700 binary alloy surfaces for hydrogen 
evolution reaction and identified BiPt with better activity as 
compared to Pt and same was synthesized and the 
experimental results also shown improved catalytic activity 
compared to pure Pt surface. Developing advanced and safe 
fuel materials for nuclear reactors is one of the challenging 
problems in nuclear energy. Predicting properties of nuclear 
materials under operational and accidental conditions is a 
challenging task and difficult to carry out experiments where 
ML has shown potential applications. Kobayashi et al.[25] 
constructed a machine learning potential for thorium dioxide 
fuel materials using the first principles molecular dynamic 
studies with limited number of atoms and the developed 
potential was used to simulate the high temperature 
thermodynamic properties of ThO . Using the available 2

experimental data, Jin et al.[26] trained a machine learning 
model to predict the radiation induced void swelling in different 
steels.

Porous Materials for Adsorption/Separation of Gases

 Designing porous materials for adsorption and 
separation of gas mixtures is another important area for 
energy, environment and many other industrial gas separation 
applications. Metal organic frameworks (MOFs) are reported to 
have potential applications in separation/storage of various 
important gases[27]. CO  capture is an important technique 2

which can be installed at stationary emission points to restrict 
the CO  levels in the atmosphere as the conventional capture 2

through aqueous amine scrubbing is an energy intensive 
process. Li et al.[28] screened a database of 5109 MOFs for 
CO  capture from wet flue gas mixture through grand canonical 2

Monte Carlo (GCMC) simulations using framework charges 
calculated from the extended charge equilibration (EQeq) 
method. Comparison of the CO /H O selectivity in the top       2 2

Fig.1: Schematic representation of training a supervised machine learning model for materials property prediction.
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15 MOFs calculated using the two different charge methods, 
EQeq and DFT based Repeating Electrostatic Potential 
Extracted ATomic (REPEAT) revealed that the CO /H O 2 2

selectivity values using EQeq charges were overestimated and 
the K  (Henry’s constant) of H O is more sensitive to the charge H 2

method than that of CO  and N . Though the DFT based atomic 2 2

charges are accurate as compared to empirical methods like 
EQeq, it is not practical to use for screening large database of 
MOFs. 

 To answer this issue, we trained a Random Forest based 
ML model to predict the atomic charges of MOF atoms using a 
limited yet meaningful set of features representing both the 
atom site properties and the local bonding environment and 
the atomic charges calculated using the Density Derived 
Electrostatic and Chemical (DDEC6) method[29]. The trained 

2model predicts accurate atomic charges in MOFs with R  value 
of 0.9952 and a mean absolute error of 0.019 at a fraction of 
the computational cost of DFT. In another interesting study, 
Boyd et al.[30] screened a library of 325,000 hypothetically 
generated MOFs and proposed that MOFs with parallel 
aromatic rings separated by around 7 Å as effective for CO  2

capture in presence of water vapor. It was also experimentally 
validated by synthesizing such MOFs with optimal CO  binding 2

environment which have shown minimal influence of water on 
the CO  capture capacity. Simon et al.[31] screened a database 2

of 670,000 porous materials for Xe/Kr separation and 
identified aluminophosphate zeolite analogue and a calcium 
based coordination network as the two most selective 
materials. HTS of 137,000 hypothetical MOFs for Xe/Kr 
separation by Sikora et al.[32] concluded that MOFs with pores 
just enough to fit a xenon and having tubular morphology of 
uniform width are ideal for Xe/Kr separation.

 In summary, this review article elaborates the 
importance and future scope of data driven materials 

 

discovery. Major steps involved in a typical supervised machine 
learning model for materials property prediction have been 
discussed with different challenges associated with them. Few 
data driven materials discovery reports especially for energy 
related materials have been discussed. 
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