
formulation of theories and mathematical equations in order to 
explain the universe.  As the interest in astronomy grew, 
especially in last 100 years or so, it lead to generation of  
voluminous data which started becoming extremely 
cumbersome to analyze. Fortunately, due to the incredible 
progress in computational field due to availability of highly 
efficient processors, coupled with theoretical understanding of 
techniques such as Machine Learning (ML) have allowed AI to 
advance at a frantic rate. The exponentially increasing 
astronomical data raises the requirement for an efficient 
paradigm. Data analysis must become more automated and 
efficient, particularly through AI.  In our efforts to understand 
the Universe, mankind is developing satellites and telescopes 
which will yield hundreds of tera-bytes of data/year. It will 
become impossible for scientists to sift through the data to 
generate meaningful science.  This is where AI has proved to be 
God-sent, with its capability to automate almost anything. It is 
thus certainly an understatement that artificial intelligence (AI) 
has taken the astronomy by storm, with breakthroughs 
appearing on a daily basis.

Introduction

Artificial Intelligence (AI) name was proposed by J. McCarthy in 
1956. AI can be considered as science that enables machines 
to take decisions as opposed to natural intelligence, similar to 
what humans would do.  The AI methodology involves learning 
from  the human intelligence and then developing computer 
algorithms for its execution. Based on the problem at hand, a 
flexible but efficient approach is used for problem-solving. The 
human intelligence is a manifestation of the biological brain 
which consists of a massively parallel set of neurons that can 
succeed at cognitive and control tasks. The advantage of the 
brain is its effective use of massive parallelism, a highly parallel 
computing structure with imprecise information processing 
capability. The human brain is a collection of ~11 billion 
interconnected neurons, where each neuron receives, 
processes and transmits information.  The neurons use 
chemical reactions to process information. This collective 
model and processing is referred to as the biological neural 
system. AI are computational models which have been 
developed as generalizations of the mathematical models of 
the biological nervous system[1]. AI models e.g like the 
Artificial Neural Networks (ANN) have been developed as 
generalizations of mathematical models of biological system. 

Need for Artificial Intelligence in Astronomy

 Astronomy is one of the oldest branches of science which 
humans studied while AI is one of the newest branches of 
science. Study of astronomy is an observational science which 
developed due to mankind’s quest for observing the night sky, 
which was not only fascinating, but also helped in day today 
tasks like creating calendars and navigation. An important 
development was the use of mathematical and geometrical 
models to study motion of the planetary objects. Early 
astronomers maintained a detailed record of the position of 
the celestial bodies.  It is since then that data analysis has 
played a pivotal role in astronomy. Astronomers required the 
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Fig.1: Schematic diagram of a typical neuron or a nerve cell in a 
biological neuron and the artificial (computer) model of a biological 
neuron.
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To quantify the above, as a thumb-rule in astronomy, the 
information we collect is roughly doubling every year[2]. The 
Hubble Telescope e.g., operating since 1990 gathers ~20GB of 
data/ week, the Large Synoptic Survey Telescope (LSST),  is 
expected to gather ~30 TB of data/night. This however is 
negligible compared to the ambitious Square Kilometer Array 
(SKA). With its 2000 radio dishes and 2 million low-frequency 
antennas, it is expected to produce ~1Exabyte/day (~ more 
data produced in a day in comparison to what internet 
produces in a year)[3].

General AI applications in Astronomy

 Historically, the first astronomical application of AI was 
the star-galaxy recognition problem and the spectral and 
morphological classifications of galaxies[4,5]. AI has also been 
applied to planetary data for prediction of solar activity 
phenomena[6]. This study enables us to understand the 
interplanetary magnetic field and stellar astrophysics. 

 AI application in astronomy can broadly be classified into 
time series analysis, identification of peculiar objects (QSO’s, 
IR galaxies and Gamma-ray Bursts) and determination of 
photometric redshifts. Additionally, the new generation mega-
science projects like LIGO, James Webb, and SKA have 
generated interest in AI application to data analysis. 

 Time series analysis: It concerns finding the variable 
signal in the time domain of data which was previously thought 
to be constant. This can be accomplished if and only if the 
observation and analysis techniques become more sensitive. 
Typical examples can be found in the study of light curves of 
variable stars and the study of Active Galactic Nuclei, the 
extragalactic sources powered by a central black hole[7]. Tools 
based on the use of Fourier analysis have been employed for 
such analysis[8,9] but if the astronomy data is unevenly 
sampled, the above techniques lead to erroneous results.  
Resampling of the data has been attempted via interpolation 
but it introduces amplification of the noise and hence Fourier, 
which is critically dependent on noise, cannot be used.  
Oppehium & Schafer[10] proposed the use of an algorithm 
based on a frequency estimator and a Neural Network for 
finding the Principal Component Analysis (PCA) & auto 
correlation matrix. After Neural Network training, the signal 
frequencies estimated are obtained for the weight matrix and 
eventually fed to the frequency estimator for final analysis.

Object detection using AI 

 For processing the astronomical data/image, the goal 
here is to make a catalog of astrometric/geometric morphology 
and estimate the photometric parameters of the image. 
However, the problems encountered are related to the low, 
comparable, or even fainter surface brightness compared to 
the image threshold. Also, many fainter objects that are 
present in the image are not detected by the analysis 
procedure due to extremely faint glow/signal, while others that 
are not present in the image are spuriously detected (spurious 
objects). The Neural Network package implemented by the 
group[11], performs object detection, de-blending and 
star/galaxy classification through mapping pixel intensities 
through PCA. Software package ‘NExt’ is employed to lower the 
dimensionality of the input pattern and an unsupervised PCA-
Neural Network is used to identify significant features.

The photometric redshift of galaxies 

 The redshift of a galaxy which is recession velocity from 
the observer is of great importance in astronomy as it provides 
an estimate of the galaxy distance. Conventionally, redshift is 
measured spectroscopically, which is time-consuming or via 
photometry, which is less accurate and has more systematic 

errors. Baum et.al.,[12,13,14] used the Sloan Digital Sky 
Survey Early data which has photometric data for ~16 million 
galaxies and spectroscopic redshift for ~50,000 objects 
distributed over a large redshif t range. They used 
unsupervised Self-Organizing Maps (SOM) to cluster the data 
in the training and test set to ensure complete coverage of the 
input parameter space. A MultiLayer Perceptron (MLP) neural 
model in the Bayesian framework is then used to estimate the 
photometric redshifts. A labeled SOM is used to derive the 
completeness and contamination of the final catalogs. To build 
the training/test sets, a set of parameters consisting of star 
magnitudes (namely u, g, r, i&z), flux levels, surface brightness 
and extinction coefficients,[14] were extracted from the data.

Application in Mega Science Projects

Laser Interferometer Gravitational-Wave Observatory

 The Laser Inter ferometer Gravitat ional -Wave 
Observatory (LIGO) is a large-scale physics experiment for the 
detection of cosmic gravitational waves. LIGO-India is a 
planned advanced gravitational-wave observatory to be 
located in India as part of the worldwide network. The LIGO 
project operates three gravitational-wave (GW) detectors [15]. 
Two of these are situated in Hanford, Washington, and one is in 
Livingston, USA. The LIGO-India project is an international 
collaboration between the LIGO Laboratory and DAE institutes 
IPR-Gandhinagar, IUCAA- Pune and RRCAT- Indore.

 Information extracted by the transmitted waves will help 
to address unsolved questions and mysteries of physics and 
astronomy.  Gravitational waves were first detected in 2015 by 
LIGO, which marked the birth of gravitational wave astronomy.  
As LIGO continues to upgrade detector sensitivity to 
gravitational waves, it will be able to probe a larger volume of 
the universe-making the detection of gravitational wave 
sources a daily occurrence rather than weekly or monthly, 
thereby generating huge volume of data. Recently, Argonne 
National Laboratory (ANL, USA) along with collaborators 
developed a new AI framework that allows for accelerated and 
reproducible detection of gravitational waves. This new 
framework indicates that AI models could not only be very 
sensitive as traditional template matching algorithms but also 
orders of magnitude faster. Furthermore, these AI algorithms 
would only require an inexpensive GPU, to process data faster 
than in real-time [16]. The AI ensemble used for this study 
processed e.g., an entire month (August 2017) of advanced 
LIGO data in less than 7 minutes. In a significant study, the AI 
ensemble used for this analysis identified all four binary black 
hole mergers previously identified in that dataset and reported 
no misclassifications.

Fig.2: A Schematic of the LIGO Detector (Source: Nuclear 
Instruments and Methods in Physics Research A517, 1–3, 2004).
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James Webb Space Telescope 

 James Webb Space Telescope (JWST) is the largest and 
most powerful space-based telescope ever constructed.   It is 

2an infrared space observatory with a 25 m  aperture (6 m 
class) telescope that will achieve diffraction-limited angular 
resolution at a wavelength of 2 μm[17]. The observatory will 
have four instruments: a near-IR camera, a near-IR multi-object 
spectrograph, and a tuneable filter imager which will cover the 
wavelength range 0.6 <λ< 5.0 μm, while the mid-IR instrument 
will do both imaging and spectroscopy from 5.0 <λ< 29 μm. The 
key science objective is to determine how galaxies and the dark 
matter, gas, stars, metals, morphological structures, and 
active nuclei within them evolved from the epoch of re-
ionization to the present day.  Keeping the above science goals 
in view, a rough estimate is that JWST will yield ~60GB of 
data/day. It will be an extremely cumbersome without any 
realistic methods for the scientific community to analyse such 
voluminous data. 

 To do away with the above difficulty, a machine learning 
model called Morpheus will be used to detect and classify 
galaxies in deep space and to map the earliest structures in the 
universe. Morpheus is a deep-learning-based AI model for 
image analysis of astronomical sources. It uses powerful AI 
models for detecting and classification of galaxies. Morpheus 
was trained on UC Santa Cruz’s Lux supercomputer - which has 
28 GPU nodes with two Nvidia V100 Tensor Core GPUs each. As 
data and images are sent from the telescope to Earth, that 
information will be fed into the AI models. The UC Santa Cruz's 
Computer Science and Astronomy department has created the 
deep learning framework that classifies astronomical objects, 
such as galaxies, based on the raw data streaming out of 
telescopes on a pixel-by-pixel basis. About half a million 
galaxies will be surveyed using multiband near-infrared 
imaging and 32,000 galaxies in mid-infrared imaging, a 
mammoth task that cannot be accomplished without the 
application of AI methods.

Square Kilometer Array 

 The Square Kilometer Array (SKA) project is an 
international effort to build the world’s largest radio telescope, 
with over a square kilometer of collecting area. The SKA scale is 
a huge leap forward in engineering, research & development 
towards building and delivering a unique instrument.

 In the first phase there will be about 200 dishes in South 
Africa and over 130,000 low frequency antennas in Western 
Australia, to monitor the Universe in unprecedented details, 
since no similar studies have ever been conducted with such a 
large array of detectors.

 

 The unprecedented sensitivity of the SKA receivers will 
allow insights into the formation and evolution of the first stars 
and galaxies just after the Big Bang, the nature of gravity and 
possibly even life beyond Earth. In addition, there could be 
several serendipitous discoveries to be expected owing to the 
sheer magnitude of SKA. 

 The expected volume of data from the SKA has motivated 
the expanded use of semi-automatic and automatic machine 
learning algorithms for scientific discovery in astronomy. The 
robust and systematic use of machine learning, however, faces 
several specific challenges including a paucity of labeled data 
for training (although enough data is there, it may still not be 
sufficient), a clear understanding of the effect of biases 
introduced due to observational and intrinsic astrophysical 
selection effects in the training data, and motivating a 
quantitative statistical representation of outcomes from 
decisive AI applications [18]. There will be specific challenges 
in recovering well-calibrated uncertainties from Bayesian 
neural networks when classifying radio galaxies which are a 
canonical example of AI application to radio astronomy. Table 1 
below gives a summary of a direct comparison of the time 
taken by experts and by AI methods to analyze the SKA images. 
It is evident from the figure that AI methodology is the only 
viable option for analyzing the SKA data.

 Fig.4 based on a survey of the arxiv data related to 
astronomy publications that contain keywords like “machine 
learning”, “deep learning”, or “artificial intelligence” in the 
abstract or title. An exponential increase can be seen in the 
field since 2010 onwards which is expected to grow at a faster 
rate once more data becomes available in the next few years 
within the astronomical community. 

Fig.3: Various components of JWST (courtesy: https://astrobites. 
org) . AI based analysis is an important part of JWST data analysis.

Table 1: Demonstration of the actual time taken by human experts, 
web analysis and AI methods. (*Radio Galaxy Zoo is an internet crowd 
sourced citizen science project that seeks to locate supermassive 
black holes in distant galaxies. It is hosted by the web portal 
Zooniverse).

Fig.4: Astronomy research papers with AI title. Figure demonstrates 
the exponential increase in last decade.
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Resource Time Remarks

Human Experts 1 source/min ~1,25,000/yr 
(full time work)

Radio Galaxy Zoo* 3,00,000 sources 12,000 users 
(5.5 yrs)

AI 100 million sources 
(15 mins) 

AI offers 
viable solution
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Gamma-ray Astronomy applications at BARC

 In the last few years, we have explored the application of 
Artificial Intelligence methods to the ground-based Gamma-ray 
astronomy activity of the department.  While as TACTIC 

2telescope, with a light collector of ~9.5m (Fig.5) is operational 
at Mt Abu,  Rajasthan for more than 20 years, it is very recently 
that a high sensitivity telescope MACE has been commissioned 
at Hanle, Leh for the study of GeV-TeV γ-ray emission from 
celestial sources. AI-based methods have been employed for 
the gamma/hadron segregation and energy estimation of data 
from the TACTIC telescope. For TACTIC data, we have 
successfully utilized ANN and Random forest AI methods which 
have resulted in acceptance of ~ 20% more gamma-ray-like 
events in comparison to the conventional Dynamic Supercuts 
Method [19][20]. A novel ANN method was applied for energy 
estimation of the recorded gamma-ray events obtained with 
the TACTIC telescope and we have been able to improve energy 
resolution from ~35% to ~ 25% [21]. For the MACE telescope, 
we have applied RF & ANN techniques for the estimation of the 
Gamma-ray signal. For primary energy estimation of the 
detected events too, we are currently applying the two 
techniques. In the future also, we have plans to apply more 
sensitive techniques like deep-learning-based AI techniques 
for Gamma-hadron segregation for the MACE data.
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