
Introduction

In this paper, least square based meshfree method is used to 
solve incompressible Navier Stokes equations using the 
Kinetic theory approach motivated by ACM. ACM was first 
introduced by Chorin [1] and has been used extensively with 
much success by Kwak and Kiris [2] for solving complex 
incompressible flow problems. In this formulation, a time 
derivative of pressure is added to the continuity equation. 
Together with the momentum equations, these form a 
hyperbolic system of equations, which can be marched in 
pseudo-time to a steady-state solution. The method can also 
be extended to solve time-dependent problems by using sub-
iterations in pseudo time at every physical time step to ensure 
divergence-free velocity field. If only steady state solution to a 
problem is required, ACM can be a very efficient formulation 
because it does not require that divergence–free velocity field 
be obtained at each iteration but only as the solution 
converges. Hence ACM is a macroscopic incompressible 
Navier Stokes (NS) solution method. The addition of the time 
derivative of pressure to the continuity equation creates a 
hyperbolic system of equations complete with artificial 

pressure waves of finite speed. When the solution converges to 
a steady state, a divergence-free flow field is obtained. Hence 
many of the well-developed compressible flow algorithms can 
be utilized for this method.

 Ohwada and Asinari [3] have shown the role of kinetic 
theory in the numerical methods for the Navier-Stokes 
equation (both compressible and incompressible) with the 
theory of characteristics for the kinetic equation. They have 
discussed the relation between ACM and Lattice Boltzmann 
Method (LBM), which is a kinetic-based method. LBM employs 
the evolution of microscopic gas models to approximate 
macroscopic equations of fluid dynamics,as shown by Banda 
et. al. [4] that yields the solution of Incompressible Navier 
Stokes Equation (INSE) in the limit Kn~Ma~h→ 0 while only the 
limit Ma~h→ 0 suffices for ACM. Chatterjee et. al. [5] have 
used a normal equation approach for incompressible fluid flow 
using the modified Artificial Compressibility Method (ACM) of 
Chorin [1] with the least square based discretisation. The 
present method is based on the principle of Kinetic Theory and 
ACM using the meshless Kinetic upwind method as adapted by 
Mahendra et. al. [6].The main aim of this work is to develop a 
robust meshfree incompressible flow solver based on kinetic 
theory.
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Numerical Methods

 Golse [7] has given the detailed derivation of 
Incompressible Navier-Stokes equations from the 
renormalized solutions of the Boltzmann equation. In the 
present case incompressibility condition is being simulated by 
choice of distribution function. Consider the Boltzmann 
equation with Bhatnagar-Gross-Kook (BGK) model as

where f  is the Maxwellian. This equation can also be written in 0

a non-dimensional form as

Where (t ) =t  v  /λ and t  is the dimensionless relaxation time, R R th R

v =1/ β is most probable molecular thermal speed. The th

dimensionless form contains Strouhal number, St= L  /t v and 0 0 th 

local Knudsen number, Kn = λ/L is defined as the ratio of L 0 

mean free path, λ and length scale, L .0

The distribution function f for simulation of ACM can be 
expressed as 

Where D is the degrees of freedom and pressure p is related to 
artificial density ρ by the artificial equation of state where δ is 
the artificial compressibility parameter

    p=� rδ

Now after taking moment we get a set of INSE in Cartesian 
coordinates.

where,

and p’ is the pressure normalized with density. GX  and GY are I I 

the x and y component of inviscid flux while GX  and GY  are the V V

x and y components of viscous flux respectively. This can be 
interpreted in a formulation similar to the ACM due to Chorin[1], 
the continuity equation for incompressible flow is modified by 
adding a time-derivative of pressure term resulting in:

As t no longer represents a true physical time in this 
formulation, now onwards it is replaced with ô that is an 
auxiliary variable whose role is analogous to that of time in a 
compressible flow problem. Hence along with x and y 
momentum equations (Eqn.9) and (Eqn.10), the modified 
continuity equation (Eqn.8) forms a hyperbolic system of 
equations.

Where,

 In this formulation the Reynolds stress has been 
approximated as a function of the strain rate tensor, and thus  v
represents a sum of the kinematic viscosity and the turbulent 
eddy viscosity.

Least Square Based Discretization

 The present  work uses least  squares-based 
discretization due to Ghosh and Deshpande [8], which is a 
meshless or grid free method. In case of finite difference 
methods, the above equation is solved by discretizing the 
various derivatives along the co-ordinate directions. Finite 
volume method is based on integral form of governing 
equations. However, if we are given an arbitrary distribution of 
points without any grid structure associated with these points, 
it will be difficult to discretize the derivatives. With the least 
square approach, spatial derivatives f , f  of a function f can be x y

discretized in terms of the data at the neighboring points or 
nodes. If we consider arbitrary n points (in general it has been 
observed, for a 2D or 3D calculation a minimum of two 
neighboring nodes per quadrant are required for the least 
square based discretization) surrounding a point P  as shown o

in Fig.1.

 The Taylor series around P  for any quantity f gives us Δf  = o i

Δx f  + Δy f  + h.o.t.i=1….n, h.o.t= higher order terms where Δx  i xo i yo i

= x  -x , Δy  = y  -y  and  Δf  = f  -f . Minimizing the square of error E, i o i i o i i o

defined by 

gives the following first order accurate least square formulae 
for the gradients

 

where Σ represents the summation over all points in the 
neighborhood N(P ) of Po. The formulae given in (Eqn. 13) and o

(Eqn. 14) can now be used to obtain the point values of f  and f  xo yo

throughout the field with incorporation of upwinding. 

Incorporation of Upwind Scheme

 In the present work upwinding is enforced in least square 
based discretization method by stencil subdivision. Consider a 
2-D linear hyperbolic partial differential equation for scalar f.

The exact solution to this equation is given by

Fig.1: Typical connectivity around point P .o
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 The propagation of information to node Po depends upon 
location of node P  relative to P  and the signs of v  and v . If v > i o 1 2 1

0 then only the nodes to the left of Po will influence the solution 
at P . Similarly, if v < 0 then only the nodes to the right of P  will o 1 o

influence the solution at P . Similar arguments show that for o

v > 0 the node below P  and for v <0 the node above P  will 2 o 2 o

influence the solution at P . For developing any upwind scheme o

this signal propagation property should be considered. Now 
replacing the spatial derivative in (Eqn.15) by discrete least 
square approximation we get

Where coefficient             of the term     which appears 

in (Eqn.17) is always positive for v >0, while it is zero for v <0. 1 1

This indicates that least square evaluation of derivative 

at node Po for v >0 should use data at nodes to the left of Po i.e. 1

based on  sub stencil N1(P ) ) and is represented as             o

for v >0,                     for v <0,        for v >0,  1 1 2

for v <0. 2

 Therefore, based on first order least square update 
formulation we get the final state update formula for artificial 
compressibility as follows

Where, 

where          and           , and GX (=GX+GX ) I V

and GY(=GY +GY ) represent the split fluxes for incompressible I V

flow.

Code Validation

 The benchmark problem of flow past a circular cylinder 
and backward facing step have been chosen in the present 
study to validate the code. In principle, the concept of mesh-
free least square-based discretization works well for “any 
mesh” system, in which the nodes can be either regularly or 
irregularly distributed. This provides the present mesh free 
method geometric flexibility.

Flow Past Circular Cylinder

 The nodes in the neighborhood of the circular cylinder 
are generated under the cylindrical coordinate system as 
shown in Fig.3a. This cylindrical mesh is fused with an 
underlying Cartesian mesh and a Chimera grid is appropriately 
generated. In the present study, we have performed numerical 
simulation at a series of Reynolds number from 20 to 40 with 
various flow patterns in the steady state. In all cases, a pair of 
vortices develop behind the cylinder and is perfectly aligned as 

Fig.2: Stencil splitting for Upwinding.
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shown in Fig.3 for different Reynolds number. This is consistent 
with the experimental observation.

 Some quantitative parameters for the re-circulating 
region, such as the length of the re-circulating region L , from sep

the rearmost point of the cylinder to the end of the wake, 
separation angle θ  are shown in the Fig.4. The results from sep

the present calculation as well as the result of the other 
researchers are listed in table 1 for the test case of Reynolds 
number of 20 and 40. Here C  is the drag coefficient. All these d

flow parameters agree well with the results of previous studies 
for the Reynolds number studied.

Backward Facing Step Problem

 Fluid flows in channels with flow separation and 
reattachment of the boundary layers are encountered in many 
flow problems like heat exchangers and ducts. Among this type 
of flow problems, a backward facing step can be regarded as 
having a simple geometry while retaining rich flow physics 
manifested by flow separation, flow reattachment and multiple 
recirculating zones in the channel depending on the Reynolds 
number. The geometrical parameters are step height, channel 
height and channel length. This problem has been used as a 
validation test case. The challenge in modelling this problem 
comes from the fact that the sizes of the separation zones 
downstream of the step are very sensitive to the pressure 
gradient in the flow, especially when the boundary layer is 
separated. If separation is present, a pressure wave traveling 
with finite speed will cause a change in the local pressure 
gradient, which will affect the location of the flow separation. It 
has been observed that this change in separated flow will 
cause a feed back to the pressure field, possibly preventing 
convergence to a steady state. The geometry used in the 
calculation is shown in Fig.5, where ‘s’ is the height of the step. 
The entrance channel width is equal to the step height and its 
length is double the step height. The total length of the channel 
from the step is 30s.

 In a very important study Yee et al. [13] observed the 
spurious behavior of the numerical schemes. They showed that 
for backward facing step flow when a coarse grid mesh is used, 
one can obtain a spurious oscillating numerical solution. Erturk 
[14] have reported that when a finer mesh was used, the 
oscillating behavior of the numerical solution disappeared and 
it was possible to obtain a steady solution. They stated that 
when finer grids are used, the Mesh Reynolds number defined 
as Re = uΔh/ν decreases and this improves the numerical m

stability characteristics of the numerical scheme used, and 
allows high Reynolds number flows computable. In the present 
study, a fine unstructured mesh is used in order to obtain 
steady state numerical solutions. A part of the unstructured 
grid used for computation is shown in Fig.6.

 At the inflow boundary, it is assumed that the flow is fully 
developed plane Poiseuille flow between parallel plates such 
that a parabolic velocity profile is prescribed throughout the 
calculation, and the static pressure is allowed to change. No 

(a) Grid (b) Re=20 (c) Re=30 (d) Re=40

Fig.3: Chimera grid used for computation and streamline plot for flow past a circular cylinder at different Reynolds numbers.

Fig.4: Characteristic parameters of the cylinder wake.

Re=20 Re=40

Source L sep qsep C d L sep qsep C d

Dennis and Chang [9] 0.94 43.7 2.05 2.35 53.8 1.522

Takami and Keller [10] 0.935 43.7 2.05 2.32 53.6 1.536

Tuann and Olson [11] 0.9 44.1 2.25 2.1 54.8 1.675

Ding et. al. [12] 0.93 44.1 2.18 2.20 53.5 1.713

Present 0.94 43.7 2.08 2.11 54.4 1.795

qsep

Lsep

Flow

Table 1: Comparison of parameters for flow past circular cylinder.
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slip boundary condition is prescribed at the top and bottom 
wall. Two step heights downstream from the inflow a two to one 
expansion is encountered. The outflow boundary extends to 30 
step heights downstream of the step. At this exit boundary a 
outflow boundary condition has been used. The flow was 
calculated using a grid of total 24600 points. The grid is 
unstructured and clustered near the side boundary for better 
resolution of the flow features to be captured.

 The streamline plots for different Reynolds numbers are 
shown in Fig.7. It is observed from the plots that as the 
Reynolds number increases the length of the primary 
separation zone x  also increases. At Reynolds number = 400 a 1

secondary separation zone has been developed at the top wall 
boundary.

 A set of experimental and numerical solutions found in 
the literature has been compared with the present 
computational result in order to demonstrate the accuracy      
of the present numerical solutions. Armaly et al. [15] have 
experimentally obtained the u-velocity profile at several x-
locations (plotted as a fraction of the total length of the 
configuration S, i.e x/S) for Reynolds number Re=100 for a 
backward facing step. For the same geometry a numerical 
solution for a steady two-dimensional flow is also presented by 
Erturk [14]. The u-velocity profiles at the corresponding x-
locations drawn to the same scale for this experimental and 
computed results are shown in the figure 8 and are compared 
with u-velocity profiles at the same x locations from the 
simulation with the present method. From Fig.8 it can be seen 
that the present computed velocity profiles agree well (except 
at the immediate downstream of the step) with that of 
experimental results of Armaly et al. [15] and numerical result 
of Erturk [14]. The difference at the flow separation zone is 
attributed to the feedback effect of pressure wave.

Fig.5: Outline of the backward facing step problem.

Fig.6: Outline of the backward facing step problem.

Fig.7: Streamline plot for flow over a backward facing step at Reynolds 
number a.100 b.200 and c.400.
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Conclusions 

 A Kinetic Upwinding theory-based approach motivated 
by the Artificial Compressibility Method for the solution of the 
incompressible Navier-Stokes equations using meshfree least 
square based discretization has been developed. Numerical 
simulations were carried out for two incompressible 
benchmark flow problems. The obtained numerical results 
agree well with the results published in literature.

Acknowledgements

 The author acknowledges the requisite technical support 
provided by M. S. Deshpande, Head, Chemical Technology 
Division (ChTD), BARC; Vinay Kumar, Scientific Officer (G), 
ChTD and Chandrajit Singh Chauhan, Scientific Officer (D), 
ChTD.
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